
Stochastic models for rank-based
interactions
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1 Introduction

1.1 Rank-based interactions in a portfolio

In the early 2000s, E. R. Fernholz introduced a class of stochastic models for equity markets
in which stock portfolios are subject to rank-based interactions. By modeling the evolution
of a stock as a diffusion process, we assume that each stock’s drift and volatility coefficients
depend on its rank by market capitalization. The simplest such model is known as the
standard Atlas model and was introduced in [Fer02].

Figure 1: Farnese Atlas (2nd century AD)

In this setting, all stocks are of zero drift except for the smallest which drives the market.
Because the growth of the whole portfolio is supported only by this smallest stock, the model
is named after the Titan Atlas, eternally holding up the sky. Such rank-based stochastic
models successfully capture an empirical feature of real equity markets, which is the so-called
small-cap premium. Since they represent riskier investments and have more potential, stocks
with smaller capitalization tend to exhibit higher growth rates, a phenomenon which conven-
tional models often fail to capture. Formally, the rank dependency in Atlas models results
in nonlinear, piecewise constant coefficients for the set of stochastic differential equations
(SDEs) which rule the behavior of the portfolio. As a result, existence and uniqueness of
solutions are fairly difficult to prove. Notable results by Fernholz et al. [FIKP12], and by
Ichiba, Karatzas and Shkolnikov [IKS13] provide answers to these questions. Jourdain and
Reygner [JR13] further investigated conditions allowing propagation of chaos in a rank-based
particle system. Building on these advances, we now turn our attention to extending the
rank-based framework to non-financial settings.
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1.2 Motivation and objectives

We intend to transpose the framework of rank-based interactions from modeling the growth
of equity stocks to such behaviors as dominant and dominated within a population, e.g.
in modeling the individual weight of fish in a shoal. The first objective of this report is
bibliographical. It aims to give an understanding of the usual methods used to show results
of existence and uniqueness of solutions for complex stochastic differential systems (SDS).

Figure 2: Toy simulation of the Atlas model (100 and 1000 iterations).

Diving into the details of the methods used in [FIKP12] and [IKS13] will give us an overview
on the results we can expect when working with such rank-based processes. Working with
weak or strong solutions, however, calls for significantly different approaches and mathemat-
ical tools. In particular, the search for weak solutions as is presented by Bass and Pardoux
[BP87] sheds another light on how to tackle these issues. Looking into [JR13] was then our
ground motivation for investigating chaos propagation properties in a more general setting
of rank-based SDEs. In existing works, the drift and volatility coefficients are assumed to be
piecewise constant. In real-life populations, however, individual characteristics conceivably
vary over seasonal fluctuations and life phases. We are thus looking to extend this setting
by including both time and space dependencies. The main focus of my contribution to this
research topic is to prove that, for piecewise smooth coefficients, we still have propagation
of chaos in these particle systems, i.e. a form of asymptotic independence and uniformity
among the individuals of the population as its size increases. By formulating the mean-field
study of our stochastic system as a problem of partial differential equation (PDE) analysis,
we will translate the initial question to showing the existence of a unique weak solution to a
certain Cauchy problem. As we shall see in Section 3.3, we were unable to prove such unique-
ness in the generalized setting. However, the leads presented in this report show promising
signs that propagation of chaos can be achieved in this context. Hélène, Dante and I intend
to pursue our investigation in the hopes of reaching a successful conclusion.
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2 The Atlas model - Weak and strong solutions

2.1 Preliminaries on SDEs

2.1.1 Weak and strong solutions to a diffusion equation

In this work, we will put an emphasis on the distinction between weak and strong solutions
to an SDE. Let us thus begin by giving a proper definition of existence and uniqueness of
solutions in both cases. Consider the following diffusion process:

dXt = b(t,Xt) dt+ σ(t,Xt) dBt, (2.1)

denoted E(b, σ), where B is a standard Brownian motion, and b, σ are measurable functions.
The following definitions can be found in [KS91].

Definition 2.1.1 (Strong solution). Fix a filtered probability space (Ω,F , {Ft},P). A strong
solution to E(b, σ) w.r.t. a fixed Brownian motion B and initial condition x0 is an Ft-
adapted, continuous process X such that:

(i) P[X0 = x0] = 1;

(ii) ∀t ≥ 0, P
[∫ t

0
(|b(s,Xs)|+ σ2(s,Xs)) ds < ∞

]
= 1;

(iii) The integral version of (2.1) holds P-almost surely:

∀t ≥ 0, Xt = x0 +

∫ t

0

b(s,Xs) ds+

∫ t

0

σ(s,Xs) dBs.

Let us now give an appropriate definition for uniqueness in a strong sense:

Definition 2.1.2 (Pathwise uniqueness). We say that pathwise uniqueness holds for equation
E(b, σ) if, and only if, given a standard Brownian motion B, and an initial condition x0: if
X and X̃ are two strong solutions of E(b, σ), then,

P
[
Xt = X̃t; 0 ≤ t < ∞

]
= 1.

The above conditions in 2.1.1 define a strong solution X as a measurable functional of an
input Brownian motion B as well as an initial condition x0. On the other hand, a weak
solution to the diffusion equation E(b, σ) is rather defined relative to a specific Brownian
motion and, in some sense, more ”distributional”.

Definition 2.1.3 (Weak solution). A weak solution to E(b, σ) is defined as a triple composed
of a probability space (Ω,F ,P), a filtration (Ft)0≤t<∞ of sub-σ-fields of F , and a pair of
processes (X,B), such that:

(i) X = (Xt)0≤t<∞ is a continuous, Ft-adapted process,
B = (Bt)0≤t<∞ is a standard Brownian motion;
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(ii) Conditions (ii) and (iii) of Definition 2.1.1 are satisfied.

Definition 2.1.4 (Uniqueness in distribution). We say that uniqueness in distribution
holds for equation E(b, σ) if, for any two weak solutions (Ω,F ,P), (Ft)0≤t<∞, (X,B), and

(Ω̃, F̃ , P̃), (F̃t)0≤t<∞, (X̃, B̃) with the same initial distribution, i.e.,

L(X0) = L(X̃0),

then X and X̃ have the same distribution.

Keeping in mind that a weak solution is given by a triple, we will often abuse the terminology
by calling a given weak solution X. Since weak solutions to an SDE might be defined on
different probability spaces, there is no immediate way to compute probabilities of the form:

P
[
Xt = X̃t; 0 ≤ t < ∞

]
,

for two different weak solutions X and X̃. In this regard, there is no sense in trying to show
pathwise uniqueness in the case of weak solutions in general. The notion of uniqueness in
distribution described in Definition 2.1.4 is thereby much better adapted in the weak context.
The following simple example gives an idea for the nuance between weak and strong solutions,
and their associated sense of uniqueness. Consider the following trivial SDE:

dXt = dBt. (2.2)

Let W and W̃ be two standard Brownian motions, not necessarily defined on the same
probability space, and let X := W and X̃ := W̃ . Then, with the initial condition X0 = 0,
X and X̃ define two weak solutions to (2.2). Indeed, since the driving Brownian motion is
not given, we can set B := W and B̃ := W̃ , and write:

dXt = dBt, dX̃t = dB̃t,

yet there is no sense in computing P
[
Xt = X̃t; 0 ≤ t < ∞

]
whenW and W̃ are not defined on

the same probability space. Furthermore, even if the weak solutions are defined on the same
probability space, say X := W and X̃ := −W , we still cannot expect pathwise uniqueness
to hold. Let B := W and B̃ := −W , then with the same initial condition, X and X̃ still
define two weak solutions to (2.2), and yet, for all t ≥ 0:

P
[
Xt = X̃t; 0 ≤ t < ∞

]
= 0.

As one may imagine, finding strong, pathwise unique solutions to complex SDEs is usually
more difficult than proving weak existence and uniqueness. Thankfully, we will see in the
following that weak solutions are powerful, and sufficient in the context of chaos propagation.
Working with weak solutions also allows for weaker assumptions on the drift coefficient b.

Let us now state some of the key results which we will need in order to understand the
construction of both strong and weak solutions to the equations of the standard Atlas model.

5



2.1.2 Tanaka’s formula and cumulative local times

In [FIKP12], the authors exhibit a strong solution to the Atlas equations, the construction
of which relies on the introduction of the local time at zero of a certain process. This local
time can be defined as follows, through Tanaka’s formula, taken at the origin.

Theorem 2.1.5 (Tanaka’s formula). For any continuous semimartingale Y , there exists a
càdlàg process (up to a modification) (LY

t )t, which is increasing, such that for all t ≥ 0:

|Yt| = |y|+
∫ t

0

sgn(Ys)ds + LY
t . (2.3)

With the convention sgn(Ys) = 1Ys>0−1Ys≤0, which is then the left derivative of the function
|.|.

Intuitively, LY
t arises from an extension of Itô’s formula to functions that are not C2, but

only left differentiable (or, e.g., convex functions). It is called the cumulative local time at
the origin over [0, t] of the process Y and can be interpreted as the time spent ”at 0” by the
process.

One can also find in the literature (e.g. [KS84]) the following equivalent definition:

LY
t = lim

ϵ→0

1

4ϵ

∫ t

0

1−ϵ<Ys<ϵds. (2.4)

which makes the intuitive interpretation of the local time at 0 clearer.

2.1.3 Change of measure and the Cameron-Martin-Girsanov (CMG) Theorem

In this section we present a key result in understanding how stochastic processes behave
under a change of reference probability. There are many versions of the Girsanov, or CMG
theorem, the first of which appeared in [CM44]. Here, we present such a result in the case
of a real-valued, one-dimensional Brownian motion.

Consider a probability space (Ω,F ,P) and a one-dimensional standard Brownian motion
B = {Bt; 0 ≤ t < ∞} (with respect to P) with its associated filtration {FB

t }t≥0. For all
t ≥ 0, FB

t is a subalgebra of F . Next, let X = {Xt; 0 ≤ t < ∞} be a real-valued, Ft-adapted
process. Assume that for some constant T > 0 we have:

∫ T

0

X2
t dt < ∞, P-a.s.

Having Xt, let us introduce:

Mt := eYt , where Yt := −1

2

∫ t

0

X2
s ds+

∫ t

0

Xs dBs. (2.5)
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Note that Mt > 0, P-almost surely. In differential notation, we have:

dYt = −1

2
X2

t dt+Xt dBt, Y0 = 0. (2.6)

Applying Itô’s formula to (2.5) yields:

dMt = eYtdYt +
1

2
eYtX2

t dt = MtXt dBt, M0 = 1. (2.7)

Of course, (2.7) can be written equivalently as an integral equation:

Mt = 1 +

∫ t

0

MsXs dBs. (2.8)

It follows that Mt is an Ft-martingale (with respect to P). In particular, for all t ∈ [0, T ],

EP[Mt] = EP[M0] = 1. (2.9)

Having Mt, and in view of (2.9), we introduce the following probability measures on (Ω,F):

Q(A) = EP[MT1A], Qt(A) = EP[Mt1A], 0 ≤ t < T. (2.10)

Observe that, for 0 ≤ t ≤ T we have Mt = EP[MT | Ft] (since Mt is a martingale). Hence,
we have, for all A ∈ Ft,

Qt(A) = Q(A). (2.11)

We can now state the main result of this section, which is the CMG Theorem in the case of
a one-dimensional standard Brownian motion.

Theorem 2.1.6 (CMG in R). Let (Ω,F , P ), Bt, Xt, Ft, and T be as above. Set:

Wt := Bt −
∫ t

0

Xs ds, t ∈ [0, T ]. (2.12)

Then, for any fixed T > 0 the process {Wt; 0 ≤ t ≤ T} is an Ft-Brownian motion on
(Ω,F ,Q) (i.e. with respect to Q).

Remark 2.1.7. The above construction which precedes the CMG Theorem allows us to
exhibit a probability measure which is suitable for the process W to remain an Ft-Brownian
motion under. In what follows, we will only need to know that such a probability measure
exists, however, I thought interesting to include where this results originates from.
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2.2 A formal introduction to the model

In this whole section, we study the following system of SDEs. Let N ∈ N. In the stan-
dard model with piecewise constant coefficients, the equations read as follows. For all
i ∈ {1, ..., N},

dX i,N
t =

N∑
k=1

bNk 1Xi,N
t =X

(k)
t

dt+
N∑
k=1

σN
k 1

Xi,N
t =X

(k)
t

dBi
t, (ASN)

where the bNk are real constants, the σN
k are strictly positive constants, and the (Bi

t)t≥0 are
independent standard Brownian motions. Furthermore, for all t ≥ 0, we denote by

X
(1)
t ≤ X

(2)
t ≤ ... ≤ X

(N)
t

the order statistics of the particle system. This model is the basis for studying rank-based
interactions and was introduced in [Fer02]. As we mentioned before, such rank-based equa-
tions, though first introduced (and mostly studied) in the context of financial portfolios, find
relevance in a biological setting. One can imagine that X i,N

t measures the weight of the
ith in a shoal of N fish at time t. It is then convenient to encapsulate certain phenomena
by tweaking the ranked coefficients bkN and σk

n. For instance, it can be observed in such a
population that a certain proportion of the largest individuals, say the 1% heaviest, exhibit
dominant, voracious behavior which further increases their ”growth rate” b. The volatility
of fish growth may also depend on how their weight compares to the rest of the pack, making
them more or less efficient in hunting prey than their fellow individuals. Figure 3 shows a
simple simulation of the classic standard model where all drift coefficients are null except for
the one of the last-ranked particle, with constant volatility. One may notice that, consider-
ing measurable biological quantity such as weight, or length, which are bound to be strictly
positive, we should be working with reflected processes. We did not, however, include these
considerations in this work.

Figure 3: The Atlas model, simulated for N = 15 particles.
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We are looking to solve the Atlas system, and we will investigate two different approaches
which encapsulate standard techniques for finding both weak and strong solutions to such
complex systems of SDEs. Having a good understanding of these classic methods was the
first objective of my internship.

2.3 Strong existence and pathwise uniqueness

In this section, we will show that the system (ASN) has a strong solution, and that it is
pathwise unique. This result was proven by Ichiba, Karatzas and Shkolnikov in [IKS13],
who make use of the case of N = 2 particles which was investigated in [FIKP12]. We recall
that a strong solution is defined with respect to a fixed collection of independent Brownian
motions (Bi)1≤i≤N and an initial condition X1,N

0 ≤ ... ≤ XN,N
0 .

2.3.1 The case of two particles

First, let us consider the specific case of N = 2 particles, as studied by Fernholz et al. in
[FIKP12]. The model formulates as follows:dX1

t = (b11X1
t ≤X2

t
− b21X1

t >X2
t
)dt+ (σ11Xt

1≤Xt
2
+ σ21Xt

1>Xt
2
)dB1

t

dX2
t = (b11X1

t >X2
t
− b21X1

t ≤X2
t
)dt+ (σ11Xt

1>Xt
2
+ σ21Xt

1≤Xt
2
)dB1

t ,
(2.13)

with initial condition (X1
0 , X

2
0 ) = (x1, x2) and the following hypotheses:

(i) B1⊥⊥B2 are two independent standard Brownian motions.

(ii) The constants b1, b2 ≥ 0 and σ1, σ2 ≥ 0 are such that b1 + b2 > 0 and σ2
1 + σ2

2 = 1 (at
least one is nonnegative, and we normalize the diffusion coefficients).

The idea of Fernholz et al. is the following: we start by constructing a weak solution which is
unique in distribution. This is the content of Proposition 2.3.1. We can then show that the
unique weak solution is actually strong, and pathwise unique. This is addressed in Theorem
2.3.3. The question of extending these results to three or more particles will then be relevant
to combinatorics rather than probability. We refer to Section 2.1 for details on weak and
strong solutions of SDEs.

Proposition 2.3.1. ([FIKP12]) Under the assumptions above, the stochastic differential
system (2.13) has a weak solution, unique in distribution.

Proof. Analysis

We begin by introducing a weak solution to (2.13), which consists of a filtered probability
space

(
Ω,F , (Ft)t≥0,P

)
on which are constructed a pair of independent, Ft-adapted, standard

Brownian motions (B1, B2), and a pair of Ft-adapted continuous processes (X1, X2) such
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that (2.13) holds with initial condition X1
0 = x1 and X2

0 = x2. Let us denote the following
quantities: {

λ := b1 + b2

ν := b1 − b2
and

{
y := x1 − x2

z := x1 + x2.

Let us now rewrite X1 and X2 by introducing their sum and difference:{
Yt := X1

t −X2
t

Zt := X1
t +X2

t .

Defining the process Wt := σ1W
1
t + σ2W

2
t , where:

W 1
t :=

∫ t

0

1{Ys>0} dB
1
s −

∫ t

0

1{Ys≤0} dB
2
s , (2.14)

W 2
t :=

∫ t

0

1{Ys≤0} dB
1
s −

∫ t

0

1{Ys>0} dB
2
s , (2.15)

we notice that W 1 and W 2 are continuous Ft-martingales, and we can compute their
quadratic variation and covariation. On the one hand:

〈
W 1
〉
t
=
〈
W 2
〉
t
=

〈∫ t

0

1{Ys>0} dB
1
s

〉
t

+

〈∫ t

0

1{Ys≤0} dB
2
s

〉
t

+

〈∫ t

0

1{Ys>0} dB
1
s ,

∫ t

0

1{Ys≤0} dB
2
s

〉
t

=

〈∫ t

0

1{Ys>0} dB
1
s

〉
t

+

〈∫ t

0

1{Ys≤0} dB
2
s

〉
t

=

∫ t

0

12
{Ys>0}ds+

∫ t

0

12
{Ys≤0}ds

= t,

where we used the independence between B1 and B2. On the other hand, knowing that
1{Yt>0}1{Yt≤0} = 0 and ⟨B1, B2⟩t = 0 for all t ≥ 0.

〈
W 1,W 2

〉
t
=

〈∫ t

0

1{Ys>0} dB
1
s −

∫ t

0

1{Ys≤0} dB
2
s ,

∫ t

0

1{Ys≤0} dB
1
s −

∫ t

0

1{Ys>0} dB
2
s ,

〉
t

= 0.

Hence W 1 and W 2 are two independent standard Brownian motions. Since σ2
1 + σ2

2 = 1,
W is a standard Brownian motion as well. We can now rewrite Y as the solution of the
following SDE:

Yt = y − λ

∫ t

0

sgn(Ys)ds+Wt, t ≥ 0, (2.16)
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where we denote sgn : x 7→ 1x>0 − 1x≤0. From Karatzas and Shreve [KS91, page 220], we
know that the solution to this SDE is strong and pathwise unique, hence unique in distribu-
tion.

Similarly, we can define Vt := σ1V
1
t + σ2V

2
t , where:

V 1
t :=

∫ t

0

1{Ys>0} dB
1
s +

∫ t

0

1{Ys≤0} dB
2
s , (2.17)

V 2
t :=

∫ t

0

1{Ys≤0} dB
1
s +

∫ t

0

1{Ys>0} dB
2
s . (2.18)

It is easy to see that V 1, V 2 are also independent standard Brownian motions, and so is V .
We can then rewrite Z as:

Zt = X1
t +X2

t = z + νt+ Vt. (2.19)

Remark 2.3.2. It is important to note that rewriting Y and Z as in (2.16) and (2.19) is not
enough to guarantee that the weak solution to (2.13) is unique in distribution. Even though
Y , and thus Z is (weakly) uniquely defined, the joint distribution of the pair (Y, Z) is not
necessarily unique. We can compute X1 and X2 as :

X1
t =

Zt + Yt

2
and X2

t =
Zt − Yt

2
, (2.20)

but this is not enough to guarantee the uniqueness of the joint distribution of the pair
(X1, X2), hence of the weak solution. We have to dig deeper!

We can notice that, given the above constructions, we can write the following intertwine-
ments:

V 1
t =

∫ t

0

sgn(Ys) dW
1
s and V 2

t = −
∫ t

0

sgn(Ys) dW
2
s , (2.21)

as well as:

W 1
t =

∫ t

0

sgn(Ys) dV
1
s and W 2

t = −
∫ t

0

sgn(Ys) dV
2
s . (2.22)

Denoting by FX := (σ(Xs, s ≤ t))t≥0 the natural filtration generated by X, the strong
existence and uniqueness of the solution of equation (2.16) yields FY = FW . We shall now
introduce the skew representations of X1 and X2. First of all, we need a new set of standard
Brownian motions: {

W̃t := σ1W
1
t − σ2W

2
t

Ṽt := σ1V
1
t − σ2V

2
t ,

(2.23)

from which we deduce new intertwinements:

Vt =

∫ t

0

sgn(Ys) dW̃s and Ṽt =

∫ t

0

sgn(Ys) dWs. (2.24)
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We can further decompose W̃t = γWt + δ Ũt, where we define:

Ũt := σ2W
1 − σ1W

2, (2.25)

a standard Brownian motion, independent from W . We also denote γ := σ2
1 − σ2

2 and
δ :=

√
1− γ2 = 2σ1σ2. We can now rewrite the process V as follows, starting from (2.24)

and :

Vt =

∫ t

0

sgn(Ys)
[
γdWs + δdŨs

]
=

∫ t

0

γ sgn(Ys)
[
dYs + λ sgn(Ys)ds

]
+ δQt,

where we denote:

Qt :=

∫ t

0

sgn(Ys) dŨs = σ2V
1
t + σ1V

2
t . (2.26)

The Tanaka formula 2.1.5, yields:

Vt = γ
(
|Yt| − |y|+ λt− 2LY

t

)
+ δQt, (2.27)

where LY =
{
LY
t , 0 ≤ t < ∞

}
denotes the cumulative local time at the origin of the process.

Y .

Note that Q is a standard Brownian motion independent from W , thus from Y . Indeed, we

immediatly get ⟨Q,W ⟩t =
〈
Ũ ,W

〉
t
= 0. Let us now combine (2.19), (2.20) and (2.27) to

compute a new algebraic expression of X1 and X2. Starting with X1, we get:

X1
t =

Zt + Yt

2
=

1

2
(x1 + x2 − γ |y|) + 1

2
(Yt + γ |Yt|) +

1

2
(ν + λγ)t− γLY

t +
1

2
δQt. (2.28)

Introducing the positive and negative part functions, denoted by x+ and x− respectively for
any real number x, we can rewrite this expression as:

X1
t =

1

2
δQt − γLY

t +
1

2
(ν + λγ)t+

1

2
(x1 + x2 − γy+ − γy−) +

1

2
(γ + 1)Y +

t +
1

2
(γ − 1)Y −

t .

Given the definition of γ, it is easy to check that we have the following identity:

1

2
(x1 + x2 − γy+ − γy−) = x1 − σ2

1y
+ + σ2

2y
−. (2.29)

This yields the skew representation of X1:

X1
t = x1 + µt+ σ2

1(Y
+
t − y+)− σ2

2(Y
−
t − y−)− γLY

t + σ1σ2Qt. (2.30)

Following the same ideas, we arrive at the skew representation of X2:

X2
t = x2 + µt− σ2

2(Y
+
t − y+) + σ2

1(Y
−
t − y−)− γLY

t + σ1σ2Qt. (2.31)
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From the skew representations, we immediatly deduce the uniqueness in distribution of
the weak solution of (2.13). Indeed, since Y |= Q, the marginal distributions of Y as the
(weakly) unique solution of (2.16), and of Q as a standard Brownian motion, determine
the joint distribution of the pair (Y,Q). From (2.30) and (2.31), this implies that the joint
distribution of the pair (X1, X2) is uniquely defined, which concludes the analysis.

Synthesis

We now move on to the proof of existence of a weak solution to (2.13), which we will
construct using the results of our previous analysis. Let us start by introducing a filtered
space

(
Ω,F , (Ft)t≥0,P

)
, where (Ft)t≥0 is such that we can define two independent, standard

Brownian motions W 1 and W 2. We can suppose, without loss of generality, that (Ft)t≥0 =
F (W 1,W 2). Let x1, x2 be two real constants, and b1, b2, σ1, σ2 ∈ R+ such that:

b1 + b2 > 0 and σ2
1 + σ2

2 = 1.

We can now construct the pairs (W, Ũ) and (U, W̃ ) of independent standard Brownian mo-
tions using the same notations as (2.25) for Ũ , and defining Ut := σ2W

1
t + σ1W

2
t , and Y as

the unique strong solution of the equation (2.16), driven this time by the exogenous (i.e. not
constructed directly from Y ) standard Brownian motion W . From Y , we can take advantage
of the intertwinements (2.21) and (2.22) in order to define V 1 and V 2 as:

V 1
t =

∫ t

0

sgn(Ys) dW
1
s and V 2

t = −
∫ t

0

sgn(Ys) dW
2
s , (2.32)

and it is easy to check that they are independent standard Brownian motions. We can then
introduce two additional pairs of standard Brownian motions (V, Q̃) and (Q, Ṽ ), where:

Q̃t := σ2V
1
t − σ1V

2
t =

∫ t

0

sgn(Ys)dUs. (2.33)

The intertwinements from (2.24) and (2.26) are still valid, as well as the Q̃t =
∫ t

0
sgn(Ys)dUs.

From the definitions, we also note the following filtration identity:

F (V 1,V 2) = F (V,Q̃) = F (Ṽ ,Q). (2.34)

Let us now define two continuous, Ft-martingales, as:

M1
t =

∫ t

0

(
σ11{Ys>0} dW

1
s + σ21{Ys≤0} dW

2
s

)
, (2.35)

M2
t =

∫ t

0

(
−σ11{Ys≤0} dW

1
s − σ21{Ys>0} dW

2
s

)
. (2.36)

We can finally introduce X1 and X2 as:

X1
t = x1 +

∫ t

0

(
b11{Ys≤0} − b21{Ys>0}

)
ds+M1

t , (2.37)
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X2
t = x2 +

∫ t

0

(
b11{Ys>0} − b21{Ys≤0}

)
ds+M2

t . (2.38)

It is now easy to check that, according to our construction, we have:

X1
t −X2

t = Yt and X1
t +X2

t = x1 + x2 + νt+ Vt, (2.39)

where ν is defined as in the previous section. We can also check that ⟨M1,M2⟩t=0 for all
t ≥ 0, and compute the quadratic variations:

〈
M1
〉
t
=

∫ t

0

(σ2
11Ys>0 + σ2

21Ys≤0)ds,

〈
M2
〉
t
=

∫ t

0

(σ2
11Ys≤0 + σ2

21Ys>0)ds.

From the martingale representation theorem (see [KS91]), we know that there exist two
independent Brownian motions B1 and B2 on our filtration such that:

M1
t =

∫ t

0

(
σ11{Ys>0} + σ21{Ys≤0}

)
dB1

s , (2.40)

M2
t =

∫ t

0

(
σ11{Ys≤0} + σ21{Ys>0}

)
dB2

s . (2.41)

It is then straightforward to reformulate X1 and X2 and cast them in the form (2.13), of
which we thus have constructed a weak solution, unique in distribution.

We now turn to the main result of [FIKP12], which recovers the strength and pathwise
uniqueness of the solution in the two-particle system.

Theorem 2.3.3. Under the same assumptions, the weak solution constructed in Proposition
2.3.1 is actually strong, and pathwise unique.

Proof. We will only consider the non-degenerate case where σ1σ2 > 0. The degenerate case,
which is also considered in [FIKP12], does not allow to show existence nor uniqueness in the
case of N > 2 particles.

It is enough to show that the following holds:

F (X1,X2) ⊆ F (B1,B2), (2.42)

i.e. that (X1, X2) is a measurable function of the pair of Brownian motions (B1, B2). First
of all, let us show the following equality:

F (X1,X2) = F (W 1,W 2). (2.43)
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The first inclusion relation F (X1,X2) ⊆ F (W 1,W 2) is easily obtained from (2.35)-(2.38), by
construction. Furthermore, from (2.35) and (2.36), M1 and M2 are F (W 1,W 2)-martingales,
but also F (X1,X2)-martingales. Indeed, since F (X1,X2) ⊆ F (W 1,W 2), the tower property of
conditional expectations yields for M1 (resp. M2):

∀s < t, E
[
M1

t | F (X1,X2)
s

]
= E

[
E
[
M1

t | F (W 1,W 2)
s

]
| F (X1,X2)

s

]
= E

[
M1

s | F (X1,X2)
s

]
= M1

s ,

where we get the last equality from (2.37) and (2.38) which show that M1 and M2 are

F (X1,X2)
s -measurable, and (2.43) then follows.

Let us now treat the equal variance case separately. Suppose that σ2
1 = σ2

2 = 1
2
. We can

easily check that in this scenario:

Wt =
B1

t −B2
t√

2
,

which yields FW ⊆ F (B1,B2). Since Y is strongly defined, we also have FY = FW , hence:

F (X1,X2) = F (W 1,W 2) ⊆ F (B1,B2). (2.44)

According to Yamada and Watanabe, strong existence and pathwise uniqueness are equiva-
lent when uniqueness in distribution already holds. This proves the existence of a pathwise
unique, strong solution to (2.13) in the case of equal variances.

The case of different variances, though similar, involves a change of probability measure, but
it is quite straightforward, and we will not go into further details for the sake of conciseness.

2.3.2 Extending to a three-particle system

We now turn our attention to the work of Ichiba et al. [IKS13]. The first step in generalizing
Proposition 2.3.1 is to extend the result for N = 3 particles. As we will see, the proof
of this extension, as well as the generalization to a finite particle system, relies on ideas
of combinatorics rather than probability theory. For this reason, we will only present the
outline of both proofs.

The model formulates as follows. For i = 1, 2, 3,

dX i
t =

3∑
k=1

bk1Xi
t=X

(k)
t

dt+
3∑

k=1

σk1Xi
t=X

(k)
t

dBi
t, (2.45)

with an initial condition which satisfies X1
0 < X2

0 < X3
0 . Let τ be the first time of triple

collision in the particle system, defined as:

τ := inf
{
t ≥ 0 : X1

t = X2
t = X3

t

}
.
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We can now extend Proposition 2.3.1.

Proposition 2.3.4. We have the following two cases:

(i) If σ2
2 − σ2

1 ≤ σ2
3 − σ2

2, then the system (2.45) has a strong, pathwise unique solution.

(ii) Else, if σ2
2 − σ2

1 > σ2
3 − σ2

2, then the strong solution still exists, and is pathwise unique
until time τ .

Remark 2.3.5. The above condition used to distinguish the two cases is more general, and
gives a sufficient condition for the absence, a.s., of triple collision in the particle system. It
will be properly introduced later.

Proof. The idea for the proof of this result is to piece together path segments consisting of a
two-particle system in interaction and a third, independent one up until there is a collision
with this third particle. The difficulty resides in the well-definition of the associated stopping
times. For all closed time intervals [a, b], we denote by:

Z [a,b],B,W (b1, b2, c1, c2) (2.46)

the strong solution of the two-particle system, which we constructed earlier, with Brownian
motions B,W , and coefficients b1, b2, c1, c2. We can now introduce the sequence of stopping
times:

0 = τ0 ≤ ρ0 ≤ τ1 ≤ ρ1 ≤ · · · , (2.47)

and construct the strong solution to the three-particle system inductively, on the intervals
[τk, ρk], [ρk, τk+1], k ≥ 0:

Xπk(1)
(
[τk, ρk]

)
:=
(
Z [τk,ρk],W

πk(1),Wπk(2)

(δ1, δ2, σ1, σ2)
)
1
, (2.48)

Xπk(2)
(
[τk, ρk]

)
:=
(
Z [τk,ρk],W

πk(1),Wπk(2)

(δ1, δ2, σ1, σ2)
)
2
, (2.49)

Xπk(3)(t) := Xπk(3)(τk) + δ3 (t− τk) + σ3

(
W πk(3)(t)−W πk(3)(τk)

)
, t ∈ [τk, ρk], (2.50)

and ρk, which is defined by:

ρk := inf
{
t > τk : Xπk(3)(t) = Xπk(2)(t) or Xπk(3)(t) = Xπk(1)(t)

}
, (2.51)

is the first instant of collision of the ”independent” particle with one of the two remaining,
interacting particles. After the collision at time ρk, the independent particle becomes part
of the new interacting two-particle system. Hence, the system now writes:

Xθk(1)(t) := Xθk(1)(ρk) + δ1 (t− ρk) + σ1

(
W θk(1)(t)−W θk(1)(ρk)

)
, t ∈ [ρk, τk+1], (2.52)

Xθk(2)
(
[ρk, τk+1]

)
:=
(
Z [ρk,τk+1],W

θk(1),W θk(2)

(δ2, δ3, σ2, σ3)
)
1
, (2.53)

Xθk(3)
(
[ρk, τk+1]

)
:=
(
Z [ρk,τk+1],W

θk(1),W θk(2)

(δ2, δ3, σ2, σ3)
)
2
, (2.54)
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and we define τk+1 := inf
{
t > ρk : Xθk(2)(t) = Xθk(1)(t) or Xθk(3)(t) = Xθk(1)(t)

}
. For each

k ≥ 0, we have denoted here by πk a permutation of the set {1, 2, 3} such that

Xπk(1)(τk) ≤ Xπk(2)(τk) ≤ Xπk(3)(τk),

and by θk a permutation of the set {1, 2, 3} such that

Xθk(1)(ρk) ≤ Xθk(2)(ρk) ≤ Xθk(3)(ρk).

It is then quite straightforward to check that the construction is coherent, and considera-
tions on the limit of these sequences of stopping times yield the existence. The pathwise
uniqueness, on the other hand, is proven by using results from [Che01].

2.3.3 The finite particle system

We now move on to the general result, which is the central theorem in [IKS13]. The result
is stated as follows:

Theorem 2.3.6. Let τ be the first time of triple collision in the particle system, defined as:

τ := inf{t ≥ 0, ∃i, j, k, X i,N
t = Xj,N

t = Xk,N
t }.

Then the system (ASN) has a unique, strong solution, defined up to time τ .

Remark 2.3.7. Note that we know a sufficient condition for there to be no triple collision
in the system, almost surely. If the sequence (0, σ2

1, σ
2
2, ..., σ

2
N , 0) is concave, that is, for any

three consecutive elements of the sequence, say σ2
i , σ

2
i+1, σ

2
i+2, we have:

σ2
i+1 ≥

1

2
(σ2

i+2 + σ2
i ), (2.55)

then τ = ∞ almost surely.

We now present a few elements of proof for Theorem 2.3.6.

Proof. The idea behind the proof of this result is similar to the previous one. By introducing
the right sequence of stopping times, and taking its limit, we construct a strong solution up
to a certain stopping time τ

[1]
0 . Since, for N > 3, it is not immediate that τ

[1]
0 = τ , we

need to keep going! Assuming that τ
[1]
0 ̸= τ , we can keep constructing the solution on a

second level of induction, taking the limit of the sequence of stopping times (τ
[1]
k )k≥0. The

limit τ [∞] is still not necessarily equal to τ . Adding a third level of induction allows us to
guarantee that strictly more than half of the particles of the system collide with another
particle at a common stopping time τ̃ , meaning that there is at least one triple collision at
that instant. We have thus constructed a strong solution of the system up until time τ .
Pathwise uniqueness is then shown in the same way as for the three-particle system.

17



2.4 Weak existence and uniqueness via a martingale problem

In this section, we present the results of [BP87], in which the authors show that diffusion
equations with piecewise constant coefficients have a unique, weak solution under the right
hypotheses. The authors do so by introducing the expected generator of the solution of
an SDE with piecewise constant coefficients. The generator of such a process, if it exists,
is directly linked to the weak solutions of the corresponding SDE, through what is called
a martingale problem. This approach differs completely from the ”hands-on” method pre-
sented [IKS13] and [FIKP12] for crafting a solution. The arguments here are more subtle,
and worth presenting although we already constructed a unique weak (and even strong)
solution. For the sake of conciseness, we will only present the main ideas of the proofs of
[BP87].

2.4.1 The martingale problem

Consider the following operator, for all f ∈ C2(RN):

La,bf : x 7→ 1

2

N∑
i,j=1

aij(x)
∂2f

∂xi∂xj

(x) +
N∑
i=1

bi(x)
∂f

∂xi

(x), (2.56)

where the ai,j, bi are bounded, measurable functions, and the matrix a := (ai,j) is uniformly
positive definite. Assume that the space RN can be partitioned into finitely many polyhedra,
the interior of which a is constant in. In order to show that the operator La,b is the generator
of a unique strong Markov process, Stroock and Varadhan in [SV79] showed that it is strictly
equivalent to showing that there is a unique solution to the following martingale problem:

For each initial condition x0, there is a unique probability measure P on C([0,∞),RN) such
that:

(i) P [X0 = x0] = 1;

(ii) For all f ∈ C2(RN), f(Xt)− f(X0)−
∫ t

0
Lf(Xs) ds is a P -local martingale.

2.4.2 Existence and uniqueness of a weak solution

We know that, when the aij are continuous on RN , the results of Stroock and Varadhan
imply that there is a unique solution to the martingale problem, and thus a unique strong
Markov process associated to La,b. The main result of [BP87] extends this result in the case
of piecewise constant coefficients under regularity conditions. It reads as follows:

Theorem 2.4.1. Assume that a is measurable, uniformly bounded and uniformly positive
definite. Moreover, suppose that b is measurable and locally bounded with at most spatially
linear growth. Let x0RN , and assume that RN can be divided into finitely many polyhedra
such that a is constant in the interior of each polyhedron. Then, the martingale problem for
La,b has a unique solution starting at x0.
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Proof. Let us give indications on the main ideas behind the proof of Theorem 2.4.1. The
parts of RN which need work are the boundary points of the polyhedra which split the whole
space. The proof is split into two parts: one which deals with nonvertex boundary points,
and the second which deals with vertex boundary points. Let A1, ..., An be a collection of
polyhedra such that:

RN =
⋃

1≤i≤n

Āi, (2.57)

and the Ai have disjoint interiors. On the one hand, x ∈
⋃n

i=1 ∂Ai is a nonvertex boundary
point if, up to a change of coordinates, in a neighborhood of x, a depends on strictly less
than N coordinates of its variable. Otherwise, x is called a boundary point.

First, let us consider nonvertex boundary points. We outline this part of the proof by
presenting the intermediate results used.

Proposition 2.4.2. Suppose that the solution to the martingale problem for the k×k matrix
a starting from y0 is unique, for a certain k < N . Then the solution to the martingale
problem starting from (y0, z0) ∈ RN for ã is also unique, where ã is the extension of a to the
dimension N ×N using the (N − k)× (N − k) identity matrix.

Lemma 2.4.3. Suppose that a is an N ×N positive definite matrix, and let k < N . Then,

there exists an N ×N matrix of the form σ =

(
A 0
B C

)
, where A,C are positive definite, of

dimensions k × k and (N − k)× (N − k) respectively, and σσT = a.

These two results are useful in proving the following theorem, which is the main result of
the first part of the global proof.

Theorem 2.4.4. Let k < N and suppose that a(x) depends only on the first k coordinates

of x. Suppose that a =

(
D F T

F G

)
, where D is of dimension k × k, and suppose that the

solution to the martingale problem starting from y0 for D is unique. Then the solution to
the martingale problem starting from (y0, z0) is unique for all z0 ∈ RN−k.

The second part of the proof, in which we consider vertex boundary points, relies on the use
of the Krein-Rutman theorem, which is a generalization of the Perron-Frobenius in infinite-
dimensional Banach spaces (see [KR62]). Then, there is remaining work to properly show
uniqueness of the solution by piecing together the results obtained for nonvertex and vertex
boundary points. We will not go into further details since, although studying Bass and
Pardoux’s work was part of my internship, it is not the main focus of this report.
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3 Propagation of chaos for a rank-based process

3.1 Kac’s propagation of chaos

The idea behind propagation of chaos is that, in a sufficiently smooth particle system, the
interactions between given particles become negligible as the total number of particles grows
to infinity. As a result, in any finite-sized subset of the population, the particles become
independent and identically distributed. Let us give a more formal introduction to the
essential concepts behind Kac’s description of propagation of chaos, introduced in [Kac56].
Consider the following real-valued particle system:

XN
t = (X1,N

t , ...XN,N
t ) ∼ fN

t .

Suppose that the system is exchangeable, i.e., that fN
t is symmetric under any permutation

of the particles.

Definition 3.1.1 (Chaos). Let f ∈ P(R). A sequence of symmetric probability measures(
fN
)
N∈N ∈ RN is said to be f-chaotic if, and only if, for all k ∈ N and ϕk ∈ Cb(Rk):

lim
N→∞

〈
fN , ϕk ⊗ 1⊗N−k

〉
=
〈
f⊗k, ϕk

〉
, (3.1)

or, equivalently, ∀k ∈ N, fk,N w→ f⊗k w.r.t. the topology of weak convergence, where fk,N

denotes the k-th marginal of fN .

We can now properly define the notion of chaos propagation. The idea is that, in a particle
system where

(
fN
0

)
is f0-chaotic, we want to show, in some sense, that this initial chaos

spreads to future times t ≥ 0. We present two definitions for propagation of chaos.

Definition 3.1.2 (Pointwise propagation of chaos). We say that pointwise propagation of
chaos holds for (ft)t≥0 ∈ C(R+,P(R)) if, and only if, for all t ≥ 0, (fN

t )N∈N is ft-chaotic.

Definition 3.1.3 (Pathwise propagation of chaos). We say that pathwise propagation of
chaos holds for f ∈ P(D(R+,R)) if and only if the sequence

(
fN
)
N∈N is f -chaotic.

Remark 3.1.4. Pathwise propagation of chaos is more general, and implies its pointwise
counterpart. In both cases, propagation of chaos implies that, as N → ∞, any fixed-sized
subset of particles behaves as an i.i.d. particle system of marginal distributions ft.

These definitions are quite straightforward. However, in [JR13], the authors rather work
with the empirical distribution µN of the system in order to prove chaos propagation. One
can find the link between Kac’s definitions of chaos and the empirical measure associated
with the particle system in the extensive review work by Chaintron and Diez [CD22, Lemma
3.19]. The lemma, proven by Sznitman in [Szn91], reads as follows:

Lemma 3.1.5. The sequence of distributions
(
fN
)
N∈N ∈ RN of the particle systems (XN)N∈N

is f-chaotic if, and only if, the empirical distribution µN := 1
N

∑N
i=1 δXi,N of the system

converges in distribution to the deterministic measure f .
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We are thus looking to prove the convergence of the sequence of random empirical measures
(µN)N∈N. In this context, the standard approach is the following. On the one hand, we
must show that the sequence of distributions (π̃N)N∈N is tight in order to have relative
compactness in the space of probability distributions over right-continuous paths with left
limits (càdlàg). On the other hand, by showing that any limit of a converging subsequence
of (π̃N)N∈N is a weak solution to a certain Cauchy problem, and that this problem only has
one such solution, one effectively shows the convergence of (µN)N∈N in distribution. Let us
start by presenting proofs for these results in the case of a classic Atlas model, as in [JR13].
We shall then take a swing at extending them for a generalized rank-based process with
unbounded drift coefficients.

3.2 The case of a standard Atlas model

In this section, we present the results of chaos propagation in the Atlas model with piecewise
constant coefficients. This question was investigated in [JR13], with a strong focus on the
link between the asymptotic behavior of a large particle system and the existence of a
unique weak solution to a certain Cauchy problem. By further showing that the sequence of
distributions of the empirical measure associated with the particle system is tight, Jourdain
and Reygner were able to prove propagation of chaos under a few nondegeneracy conditions.

3.2.1 Model formulation and the limiting SDE

Recall the standard particle system: for all i ∈ {1, ..., N},

dX i,N
t =

N∑
k=1

bNk 1Xi,N
t =X

(k)
t

dt+
N∑
k=1

σN
k 1

Xi,N
t =X

(k)
t

dBi
t.

Let us now introduce b, σ, real-valued, continuous functions defined on [0, 1] such that σ is
nonnegative on [0, 1], and that:

∀k ≤ N, bNk = b

(
k

N

)
, σN

k = σ

(
k

N

)
.

The continuity condition ensures that, as the population size grows, the dynamics of a
given subset of closely ranked particles are asymptotically identical. The empirical measure
associated with the N-particle system is defined as follows: for all N ∈ N,

µN :=
1

N

N∑
i=1

δXi,N .

The empirical distribution is to be seen as a random measure over the space of càdlàg paths,
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i.e., for all ω,

µN(ω) =
1

N

N∑
i=1

δXi,N (ω)

=

(
1

N

N∑
i=1

δXi,N
t (ω)

)
t≥0

,

is itself a probability measure over the space D(R+,R). Let us now rewrite the system of
SDEs in terms of the empirical distribution. For all i ∈ {1, ..., N},

dX i,N
t = b

(
H ∗ µN

s (X
i,N
s )
)
dt+ σ(H ∗ µN

s (X
i,N
s )) dBi

t, (3.2)

where H : x 7→ 1x>0 +
1
2
δ0(x) denotes the Heaviside step function, and µN

s is the empirical
measure associated with the system at time s ≥ 0. This formulation follows from a simple
calculation: for all s ≥ 0 and i ∈ {1, ..., N}),

H ∗ µN
s (X

i,N
s ) =

∫ ∞

−∞
H(X i,N

s − x)µN
s (x) dx

=

∫ Xi,N
s

−∞
µN
s (x) dx

=
1

N

N∑
k=1

∫ Xi,N
s

−∞
δXk,N

s
(x) dx

=
rank(X i,N

s )

N
.

We immediately retrieve the formulation from (ASN).

We are looking for a limit to the empirical measure as a collection of probability measures
(Pt)t≥0. By assuming its existence, and taking the formal limit in (3.2), we can write the lim-
iting nonlinear SDE which governs the dynamics of a single particle in the infinite population
asymptotics:

{
Xt = X0 +

∫ t

0
b(H ∗ Ps(Xs)) ds+

∫ t

0
σ(H ∗ Ps(Xs))dBs

Xt ∼ Pt,
(3.3)

with initial condition X0 ∼ P0 given and independent from B.

Remark 3.2.1. By nonlinear, we refer in this context to the fact that the coefficients of the
SDE (3.3) depend explicitly on both Xs and its distribution Ps. This is called nonlinearity
in McKean’s sense.
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Let us note that for all s ≥ 0, Fs : x 7→ H ∗ Ps(x) is exactly the cumulative distribution
function (CDF) associated to the distribution Ps. We can thus rewrite the limiting SDE as
follows:

{
Xt = X0 +

∫ t

0
b(Fs(Xs)) ds+

∫ t

0
σ(Fs(Xs))dBs,

Ft is the CDF of Xt.
(3.4)

3.2.2 Deterministic dynamics and the Cauchy problem

We are now interested in finding a deterministic description of the dynamics of {Ft}t≥0 as
a collection of CDFs. Let us introduce a smooth test function f ∈ C∞

c (R). Itô’s formula
yields, for all t ≥ 0:

f(Xt) = f(X0) +Mt +
1

2

∫ t

0

σ2(Fs(Xs))f
′′(Xs) ds+

∫ t

0

b(Fs(Xs))f
′(Xs) ds, (3.5)

where (Mt)t≥0 is a martingale with zero expectation. By taking the expectation, and assum-
ing that Pt has density pt on R, one gets:∫

R
f(x)pt(x) dx =

∫
R
f(x)p0(x) dx+

1

2

∫
R

∫ t

0

σ2(Fs(x))f
′′(x)ps(x) ds dx (3.6)

+

∫
R

∫ t

0

b(Fs(x))f
′(x)ps(x) ds dx.

We can now integrate by parts both terms on the right, using the fact that f has compact
support. On the one hand:∫

R

∫ t

0

b(Fs(x))f
′(x)ps(x) ds dx = −

∫
R

∫ t

0

f(x) ∂x [b(Fs(x))ps(x)] ds dx.

And on the other hand,∫
R

∫ t

0

σ2(Fs(x))f
′′(x)ps(x) ds dx =

∫
R

∫ t

0

f(x) ∂2
x

[
σ2(Fs(x))ps(x)

]
ds dx.

Combining these terms yields the following equation:∫
R
f(x)pt(x) dx =

∫
R
f(x)p0(x) dx+

1

2

∫
R

∫ t

0

f(x) ∂2
x

[
σ2(Fs(x))ps(x)

]
ds dx (3.7)

−
∫
R

∫ t

0

f(x) ∂x [b(Fs(x))ps(x)] ds dx,

which is exactly the weak formulation of the following nonlinear Fokker-Planck equation:

∂tpt(x) =
1

2
∂2
x

[
σ2(Ft(x))pt(x)

]
− ∂x [b(Fs(x))pt(x)] . (3.8)
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Finally, in order to retrieve the Cauchy problem we will be studying in the following, we
integrate over space, knowing that for all t ≥ 0, ∂xFt(.) = pt(.). This yields:{

∂tFt(x) =
1
2
∂2
xA(Ft(x))− ∂xB(Ft(x))

F0(x) = H ∗ P0(x),
(3.9)

where P0 is an arbitrary probability measure, and we defined:

{
A(u) :=

∫ u

0
σ2(v)dv

B(u) :=
∫ u

0
b(v)dv.

From this expression of the Cauchy problem, we easily retrieve its weak formulation as before
by introducing a test function g ∈ C∞

c ([0, t] × R). After integrating by parts over time on
the left-hand side, and over space on the right-hand side:∫

R
g(t, x)Ft(x) dx−

∫
R
g(0, x)H ∗ P0(x) dx

=

∫
R

∫ t

0

[
Fs(x) ∂sg(s, x) +

1

2
A(Fs(x)) ∂

2
xg(s, x) +B(Fs(x)) ∂xg(s, x)

]
ds dx. (3.10)

3.2.3 Propagation of chaos in the Atlas model

Let us first introduce, for all T ∈ [0,∞], the set P(T ) of all continuous mappings t 7→ Pt

such that for all t < T ,
∫
R xPt( dx) < ∞, i.e. Pt has a finite first order moment, and that

the function t 7→
∫
R |x|Pt( dx) is locally integrable on [0, T ). Then, let us define:

F(T ) := {F : (t, x) 7→ (H ∗ Pt(x); P ∈ P(T )}.

Note that F(T ) ⊂ C([0, T ) , L1
loc(R)). We denote F(∞) and P(∞) by F and P , respectively.

F is, in simple terms, the set of all smooth collections of CDFs indexed by R+.

We know from [BP87], or from [IKS13], that for any N ≥ 1, the system of SDEs (3.2) has a

weak solution XN =
(
X1,N

t , ..., XN,N
t

)
t≥0

, unique in distribution, with empirical measure:

µN :=
1

N

N∑
i=1

δXi,N .

We now move on to stating the main result of chaos propagation for the standard Atlas
model, and giving the main elements of its proof which we gave an outline of earlier. This
theorem is formulated in [JR13, Proposition 2.1].
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Theorem 3.2.2 (Propagation of chaos). Assume that the function A is increasing, and that
the initial distribution P0 satisfies: ∫

R
xP0( dx) < ∞.

Then, the Cauchy problem (3.9) has a unique, weak solution in F , and it writes F : (t, x) 7→
H ∗ Pt(x), where t 7→ Pt is the limit in C([0,∞) ,P(R)), in probability, of the sequence of
mappings t 7→ µN

t .

3.2.4 Intermediate results and proofs

In order to prove Theorem 3.2.2, we must introduce several intermediate results. Let us begin
with considerations on the sequence

(
πN
)
N≥1

of distributions of the random mappings t 7→
µN
t that is, in C([0,∞) ,P(R))). Moreover, let

(
π̃N
)
N≥1

denote the sequence of distributions

of µN as a random measure with values in P(C([0,∞) ,R)).

Lemma 3.2.3. The sequence
(
π̃N
)
N≥1

is tight.

Proof. Recall that tightness in this context refers to the fact that for all ϵ > 0, there exists
a compact subset K of P(C([0,∞) ,R)) such that for all N ≥ 1, π̃N(K) ≥ 1 − ϵ. This
definition can be found in [Bil99].

Following [Szn91, Proposition 2.2], since the distribution ofXN is symmetric in C
(
[0,∞),RN

)
,(

π̃N
)
N≥1

is tight if, and only if the sequence of distributions of the first coordinates
(
X1,N

)
N≥1

is tight. This is true according to the Kolmogorov criterion, which can also be found in
[Bil99], since:

(i) The marginals X1,N
0 ∼ P0 are uniformly tight;

(ii) For all N ≥ 1 and s, t ≥ 0, the moments of
∣∣∣X1,N

t −X1,N
s

∣∣∣ are bounded,

and the latter is immediate since the coefficients σ and b are bounded.

Since the canonical application P(C([0,∞),R)) → C([0,∞),P(R)) is continuous, then the
tightness of the sequence

(
π̃N
)
N≥1

implies that of the sequence
(
πN
)
N≥1

of distributions of

the random mappings t 7→ µN
t .

Now, let π∞ be the limit of a converging subsequence of
(
πN
)
N≥1

, which we will still index
by N for clarity purposes. We wish to show that π∞ is uniquely defined, thus showing the
convergence in distribution of our sequence.

Lemma 3.2.4. Assume that the initial distribution P0 verifies:∫
R
xP0( dx) < ∞.
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Then the distribution π∞ is concentrated on the set of mappings P ∈ P such that (t, x) 7→
H ∗ Pt(x) is a weak solution to the Cauchy problem (3.9).

Proof. We will prove that π∞ is concentrated on P . The rest of the proof, which deals with
showing that a random variable µ∞ ∼ π∞ is almost surely a weak solution to (3.9), can be
adapted from [Jou00]. We did not insist on this part, since we were not able to adapt this
result in our rank-based Ornstein-Uhlenbeck model.

Let µ∞ ∼ π∞. We need to show that, for all t ≥ 0:

sup
s∈[0,t]

∫
R
|x|µ∞

s ( dx) < ∞,

almost surely, so that, taking t in a countable, unbounded subset of R+ will allow us to swap
the ”a.s.” statement and yield µ∞ ∈ P almost surely.

Let t ≥ 0. For all M ≥ 0, the function

fM : µ 7→ sup
s∈[0,1]

∫
R
(|x| ∧M)µs(dx)

is continuous and bounded on C([0,+∞),P(R)). For all N ≥ 1, the Cauchy-Schwarz in-
equality as well as Doob’s inequality yield:

E
[
fM(µN)

]
≤ 1

N

N∑
i=1

E

[
sup
s∈[0,1]

|X i,N
s |

]

≤
∫
R
|x| P0(dx) + ∥b∥∞ +

1

n

n∑
i=1

[
E

(
sup
s∈[0,1]

∣∣∣∣∫ s

0

(
σ(H ∗ µi,N

r )(X i,N
r )
)
dBi

r

∣∣∣∣2
)]1/2

≤ C,

where the constant C does not depend on M nor N . As a consequence,

lim inf
M→+∞

E[fM(µ∞)] ≤ C,

and using Fatou’s lemma, we can write:

C ≥ E
[
lim inf
M→+∞

fM(µ∞)

]
≥ E

[
sup
s∈[0,1]

lim inf
M→+∞

∫
R
(|x| ∧M)µ∞(s)(dx)

]
.

Finally, by the monotone convergence theorem,

lim
M→+∞

∫
R
(|x| ∧M)µ∞(s)(dx) =

∫
R
|x|µ∞(s)(dx),
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so that

E

[
sup
s∈[0,1]

∫
R
|x|µ∞(s)(dx)

]
≤ C,

which yields the expected result.

We are now only missing one crucial argument, which is the uniqueness of a weak solution
to the Cauchy problem (3.9). This will automatically yield the convergence of the sequence
of mappings t 7→ µN

t , as we explained earlier.

Proposition 3.2.5. Assume that A is increasing. Then, for all T > 0 and, in particular,
for T = ∞, there is at most one weak solution to the Cauchy problem (3.9) in F(T ).

Before diving into the proof of Proposition (3.2.5), note that adapting this result to the cases
of a rank-based model with unbounded drift coefficients was the primary objective of my
contribution to this research topic. As we will see, we quickly stumbled upon an obstacle,
which was directly due to the unbounded character of our drift, and that we were not able
to overcome despite several, interesting ideas.

Proof. The general idea behind the proof is to show that uniqueness for the Cauchy problem
(3.9) is equivalent to existence for a second, adjoint problem.

Let T ∈ (0,∞], and let F 1, F 2 ∈ F(T ) be two weak solutions to (3.9). Moreover, for
all 0 ≤ t < T , define Qt := (0, t) × R. It is immediate that the function F 2

t − F 1
t is

integrable over R, and that the function (s, x) 7→ F 2
s (x)−F 1

s (x) is integrable over Qt. Let us
denote F̄s(x) := F 2

s (x) − F 1
s (x). Combining the weak formulations of the Cauchy problem

and using an integrated version of the mean value theorem yields, for any test function
g ∈ C∞

c ([0, T )× R) :∫
Qt

F̄s(x)
[
1
2
Ã(s, x) ∂2

xg(s, x) + B̃(s, x) ∂xg(s, x) + ∂sg(s, x)
]
ds dx (3.11)

=

∫
R
F̄t(x) g(t, x) dx,

where we introduced the averaged integral coefficients:{
Ã(s, x) :=

∫ 1

0
a
(
(1− θ)F 1

s (x) + θF 2
s (x)

)
dθ

B̃(s, x) :=
∫ 1

0
b
(
(1− θ)F 1

s (x) + θF 2
s (x)

)
dθ.

One can show that, for all t ∈ [0, T ), the equation (3.11) holds true for all g ∈ C1,2
b ([0, T )× R).

In order to prove F̄ ≡ 0 on Qt, it is enough to show that, for any f ∈ C∞
c ((0, t)× R),∫

[0,t]×R
F̄ (s, x) f(s, x) ds dx = 0, (3.12)
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since C∞
c ((0, t)×R) is a dense subset of L1(Qt). Fix a test function f ∈ C∞

c ((0, t)×R). We
wish to solve an adjoint parabolic problem whose solution, which writes:

{
1
2
Ã∂2

xg + B̃∂xg + ∂sg = f, (s, x) ∈ [0, t)× R
g(t, x) = 0, x ∈ R,

(3.13)

where t is such that Supp(f) ⊂ [0, t)×R. Since the coefficients Ã and B̃ might not be smooth
enough in order for the adjoint problem (3.13) to have solutions, we need to regularize and
approximate it. Let us introduce two approximation variables δ, η > 0, and a partition of
the space:

Gδ :=
{
(s, x) ∈ [0, t]× R : |F s(x)| < δ

}
, and Fδ := ([0, t]× R) \Gδ. (3.14)

Since A in increasing and F 1, F 2 take values in [0, 1], there exist positive constants L(δ) > 0
and K(δ) > 0 such that:

Ã(s, x) ≥ L(δ) on Fδ, (3.15)

|λδ
η(s, x)| ≤ K(δ) on [0, t]× R, (3.16)

where we defined:

λδ
η(s, x) :=


0, (s, x) ∈ Gδ,

B̃(s, x)√
1
2
(η + Ã(s, x))

, (s, x) ∈ Fδ.
(3.17)

In what follows, the values of constants such as C and K(δ) can change from one line to
another. Now, let us introduce a regularization of our coefficients. Let ξ be a C∞ probability
density on R2 such that

Supp(ξ) ⊂ [−1, 1]× [−1, 1].

For all ϵ > 0, let
ξϵ := ϵ−2ξ(ϵ−1s, ϵ−1x),

and define
Ãϵ = Ã ∗ ξϵ, λδ

η,ϵ = λδ
η ∗ ξϵ.

Then Ãϵ and λδ
η,ϵ are C∞ functions and all of their derivatives are bounded on [0, t] × R.

Moreover, we have:

lim
ϵ→0

Ãϵ(s, x) = Ã(s, x) a.e. in [0, t]× R, (3.18)

lim
ϵ→0

λδ
η,ϵ(s, x) = λδ

η(s, x) a.e. in [0, t]× R, (3.19)

Ãϵ(s, x) ≤ C (s, x) ∈ [0, t]× R, (3.20)∣∣λδ
η,ϵ(s, x)

∣∣ ≤ K(δ) (s, x) ∈ [0, t]× R, (3.21)
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where C refers to a positive constant independent of ϵ, δ and η, and K(δ) refers to a positive
constant depending only on δ. We finally define:

B̃δ
η,ϵ(s, x) = λδ

η,ϵ(s, x)
[
1
2

(
η + Ãϵ(s, x)

)]1/2
. (3.22)

Note the fact that:
∥B̃δ

η,ϵ∥∞ ≤ K(δ). (3.23)

We are now able to introduce the approximate adjoint problem:
1

2

(
η + Ãϵ

)
∂2
xg + B̃δ

η,ϵ ∂xg + ∂sg = f, (s, x) ∈ [0, t]× R,

g(t, x) = 0, x ∈ R.
(3.24)

At this point, it is easy to check that the approximate adjoint problem has a unique classical
solution which is bounded, according to [KS91]. However, the boundedness of the coefficients
of the problem is crucial for this step, and our attempts to circumvent it were not successful.
The smoothing function ξ, though of compact support, does not prevent the unbounded
nature of B̃δ

η,ϵ. Hence, for the rest of the proof, we will only highlight the important ideas
behind controlling the solution of the approximate problem, as we were not able to go this
far in our own work.

As we mentioned, since the coefficients are bounded, Lipschitz continuous, and the operator
is uniformly parabolic, and given that f is continuous and bounded, the approximate adjoint
problem (3.24) has a unique classical solution which we will denote by gδη,ϵ. According to
[Fri64, p. 263], gδη,ϵ is C∞ on [0, t] × R. The Feynman-Kac formula yields, for all (s, x) ∈
[0, t)× R,

gδη,ϵ(s, x) = −E
[∫ t

s

f
(
r, Zs,x

r

)
dr

]
, (3.25)

where, for a given standard Brownian motion B, (Zs,x
r )r∈[0,t] is the unique, strong solution

of the following SDE: for all r ∈ [s, t],

Zs,x
r = x+

∫ r

s

B̃δ
η,ϵ

(
u, Zs,x

u

)
du+

∫ r

s

(
η + Ãϵ(u, Z

s,x
u )
)1/2

dWu. (3.26)

We now have to introduce a few intermediate results which we will not give proof of. The
first one deals with finding suitable upper-bounds on the solution gδη,ϵ and its derivatives.
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Lemma 3.2.6. For each δ, η, ϵ > 0 there exist constants C,K(δ) > 0 and κ(ε, δ, η) > 0 (not
necessarily the same from one line to the other), such that:

sup
(s,x)∈[0,t]×R

|gδη,ϵ(s, x)| ≤ C, (3.27)

sup
s∈[0,t]

∫
R
|gδη,ϵ(s, x)| dx ≤ K(δ), (3.28)

sup
s∈[0,t]

|∂xgδη,ϵ(s, x)| ≤ κ(ε, δ, η) e−x2/κ(ε,δ,η), (3.29)

sup
s∈[0,t]

|∂2
xg

δ
η,ϵ(s, x)| ≤ κ(ε, δ, η) e−x2/κ(ε,δ,η). (3.30)

Using the fact that gδη,ϵ is a solution to (3.24), and that gδη,ϵ ∈ C1,2
b ([0, t]×R) to apply (3.11),

we can write:∫
[0,+∞)×R

(F 2
s (x)− F 1

s (x))f(s, x) ds dx (3.31)

=

∫
Ql

(F 2
s − F 1

s )

[
1

2
(η + Ãϵ − Ã)∂2

xg
δ
η,ϵ + (B̃δ

η,ϵ − B̃)∂xg
δ
η,ϵ

]
ds dx.

The goal is now to show that the right-hand side of (3.31) goes to zero when δ, η, ϵ → 0.

Lemma 3.2.7. There exist constants K(δ) and C such that for all ε, η as above,∫
Qt

1
2
(η + Ãε)

(
∂2
xg

δ
η,ϵ

)2
dx ds ≤ K(δ)

η
+ C, (3.32)∫

Qt

(
∂xg

δ
η,ϵ

)2
dx ds ≤ K(δ)

η
+ C. (3.33)

Lemma 3.2.8. There exists C > 0 independent of δ, η, ε such that

sup
s∈[0,t]

∫
R

∣∣∂xgδη,ϵ(s, x)∣∣ dx ≤ C. (3.34)

These two results are enough to show that the right-hand side of (3.31) goes to zero when
δ, η, ϵ → 0. There is still work to do, and we will not provide more details here. To summarize,
we showed that:

∫
[0,T )×R

(
F 2
s (x)− F 1

s (x)
)
f(s, x) ds dx = 0. (3.35)
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Since f is chosen arbitrarily, we conclude that:

F 2
s (x) = F 1

s (x), a.e. in Qt, (3.36)

and this for t ∈ [0, T ). In other words, F 1 = F 2 in F .

3.3 The rank-based Ornstein-Uhlenbeck model

Now, we are looking to adapt the work of Jourdain and Reygner in the case of a rank-based
model with unbounded drift. More specifically, we intended to show propagation of chaos in
a particle system with the drift of an Ornstein-Uhlenbeck process.

In this section, let us consider the following rank-based particle system. For all i ∈ {1, ..., N},

dX i,N
t = −

N∑
k=1

(
λN
k X

i,N
t − ηNk

)
1
Xi,N

t =X
(k)
t

dt+
N∑
k=1

σN
k 1

Xi,N
t =X

(k)
t

dBi
t, (OUN)

where (Bi)1≤i≤N is a collection of independent, standard Brownian motions. In this setting,
the drift coefficients of the classic Atlas model are replaced by non-constant coefficients with
spatially linear growth. Let λ, ζ, σ be real-valued, measurable functions defined on [0, 1] such
that:

∀k ≤ N, λN
k = λ

(
k

N

)
, ζNk = ζ

(
k

N

)
, σN

k = σ

(
k

N

)
.

Assume further that σ is positive on [0, 1]. We are looking to adapt some of the methods
used in [JR13] in order to prove propagation of chaos in some sense for our particle system.

Our general motivation is to investigate general properties of rank-based models with more
complex drift coefficients than the ones considered in previous papers. To the best of our
knowledge, there is no pre-existing work on existence and uniqueness of either weak or strong
solutions to these generalized Atlas systems, nor on potential chaos propagation properties.
We chose to focus on the latter here, assuming that we already have the existence of a weak
solution to the rank-based Ornstein-Uhlenbeck equations (OUN), which a priori we do not.
Prior research by Hélène and her coworker hints at the difficulty of adapting the ideas of
[JR13] to a general collection of spatially unbounded drift coefficients {b(t, x, k

N
); 1 ≤ k ≤

N}. By considering the special case of an Ornstein-Uhlenbeck base (see [OU30]), we hoped
to make use of its mean-reverting property to obtain control, in some sense, over the particle
system.
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3.3.1 The limiting SDE and the associated Cauchy problem

Following Jourdain and Reygner’s method, we now translate the problem from a probabilistic
to a deterministic context. First, let us rewrite the system of SDEs. For all i ∈ {1, ..., N},

dX i,N
t = −

(
λ
(
H ∗ µN

s (X
i,N
s )
)
X i,N

t − η
(
H ∗ µN

s (X
i,N
s )
))

dt+ σ(H ∗ µN
s (X

i,N
s )) dBi

t.

As we did before, we are looking for a limit to the sequence of empirical measures. Assuming
its existence and taking the formal limit in (3.3.1) yields the following limiting SDE:{

Xt = X0 −
∫ t

0
[λ(H ∗ Ps(Xs))Xs − η(H ∗ Ps(Xs))] ds+

∫ t

0
σ(H ∗ Ps(Xs))dBs

Xt ∼ Pt,
(3.37)

with initial condition X0 ∼ P0 given and independent from B. Once again, we can rewrite
the above equation by introducing the CDF of the process X as follows:{

Xt = X0 −
∫ t

0
[λ(Fs(Xs))Xs − η(Fs(Xs))] ds+

∫ t

0
σ(Fs(Xs))dBs,

Ft is the CDF of Xt.
(3.38)

We are now looking to find, in a similar approach as before, a deterministic description of
the dynamics of the collection of CDFs {Ft}t≥0 of the limiting process. By introducing a
test function f ∈ C∞

c (R), we can apply Itô’s formula and write, for all t ≥ 0:

f(Xt) = f(X0) +Mt +
1

2

∫ t

0

σ2(Fs(Xs))f
′′(Xs) ds (3.39)

−
∫ t

0

[λ(Fs(Xs))Xs − η(Fs(Xs))] f
′(Xs) ds,

where (Mt)t≥0 is a martingale with zero expectation. Let us take the expectation in the
above equation. Assuming that Pt has density pt on R, we get:∫

R
f(x)pt(x) dx =

∫
R
f(x)p0(x) dx+

1

2

∫
R

∫ t

0

σ2(F (x))f ′′(x)ps(x) ds dx (3.40)

−
∫
R

∫ t

0

[λ(Fs(x))x− η(Fs(x))] f
′(x)ps(x) ds dx.

We can now integrate by parts both terms on the right, using the fact that f has compact
support. On the one hand:∫

R

∫ t

0

[λ(Fs(x))x− η(Fs(x))] f
′(x)ps(x) ds dx

= −
∫
R

∫ t

0

f(x) ∂x [(λ(Fs(x))x− η(Fs(x)))ps(x)] ds dx.
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And on the other hand,∫
R

∫ t

0

σ2(Fs(x))f
′′(x)ps(x) ds dx =

∫
R

∫ t

0

f(x) ∂2
x

[
σ2(Fs(x))ps(x)

]
ds dx.

Combining these terms gives the following equation:∫
R
f(x)pt(x) dx =

∫
R
f(x)p0(x) dx+

1

2

∫
R

∫ t

0

f(x) ∂2
x

[
σ2(Fs(x))ps(x)

]
ds dx (3.41)

+

∫
R

∫ t

0

f(x) ∂x [(λ(Fs(x))x− η(Fs(x)))ps(x)] ds dx,

which is once again the weak formulation of a new nonlinear Fokker-Planck equation:

∂tpt(x) =
1

2
∂2
x

[
σ2(Ft(x))pt(x)

]
+ ∂x [(λ(Ft(x))x− η(Ft(x)))pt(x)] . (3.42)

This new equation is more complex to approach than the one in Section 3.2. The Cauchy
problem we will be studying in this case can be retrieved by integrating over space, knowing
that for all t ≥ 0, ∂xFt(.) = pt(.):{

∂tFt(x) =
1
2
∂2
x [A(Ft(x))] + ∂x [BL(x, Ft(x))]− Λ(Ft(x))

F0(x) = H ∗ P0(x),
(3.43)

where we defined: 
A(u) :=

∫ u

0
σ2(v)dv

Λ(u) :=
∫ u

0
λ(v)dv

H(u) :=
∫ u

0
η(v)dv

BL(x, u) := Λ(u)x−H(u).

Introducing a test function g ∈ C∞
c ([0, t]×R) allows us to obtain a weak formulation of the

Cauchy problem as before. After integrating by parts over time on the left-hand side, and
over space on the right-hand side:∫

R
g(t, x)Ft(x) dx−

∫
R
g(0, x)H ∗ P0(x) dx

=

∫
R

∫ t

0

[
Fs(x) ∂sg(s, x) +

1

2
A(Fs(x)) ∂

2
xg(s, x)

−BL(x, Fs(x)) ∂xg(s, x)− Λ(Fs(x)) g(s, x)

]
ds dx (3.44)

As mentioned earlier, studying this Cauchy problem and showing uniqueness of a weak
solution was the main focus point of my research during this internship. We were quickly
convinced that showing the tightness of our sequence of distributions and characterizing the
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limit of a converging subsequence would not pose major difficulties. We thus concentrated
our effort on studying the Cauchy problem directly with the goal of circumventing the
unboundedness issue. Hélène and her collaborator stumbled upon the same obstacle a few
years ago while tackling the problem for a general, unbounded set of drift coefficients of the
form:

bNk (t, x) = b

(
k

N
, t, x

)
.

In the hopes that the properties of Ornstein-Uhlenbeck processes might help us overcome
this difficulty, we tried to directly adapt the proof of [JR13], unsuccessfully. Following the
idea of Jourdain and Reygner, let us introduce two weak solutions F 1 and F 2 to the Cauchy
problem. By substracting the weak formulations for F 1 and F 2, we can write, for any test
function g ∈ C∞

c ([0, T )× R):∫
R
g(t, .)F̄t =

∫∫
Qt

F̄s(x)

[
1

2
∂2
x

[
A(F 2

s (x))− A(F 1
s (x))

]
− ∂x

[
BL(x, F

2
s (x))−BL(x, F

1
s (x))

]
−
[
Λ(F 2

s (x))− Λ(F 1
s (x))

]
+ ∂sg

]
ds dx, (3.45)

where we recall that F̄t := F 2
t − F 1

t . Let us also denote F θ
s (x) := θF 2

s (x) + (1 − θ)F 1
s (x).

Then, we can introduce the following quantities:

Ã(s, x) :=

∫ 1

0

σ2
(
F θ
s (x)

)
dθ; (3.46)

B̃L(s, x) :=

∫ 1

0

∂uBL(x, F
θ
s (x)) dθ; (3.47)

Λ̃(s, x) :=

∫ 1

0

λ(F θ
s (x)) dθ. (3.48)

Reassembling these elements into the substracted weak formulations then yields the adjoint
problem: finding g : [0, t]× R → R such that{

∂sg +
1
2
Ã∂2

xg + B̃L∂xg + Λ̃g = f ∈ C∞
c ([0, t)× R)

g(t, .) = 0
(3.49)

3.3.2 Attempting to trap the coefficients inside a box

From there, we already have an issue. Although Jourdain and Reygner introduce an approx-
imation of their adjoint problem, which we could also do, the problem remains that we do
not know how to prove that such a problem has a (unique) solution. Once again, the issue
resides in the unboundedness of B̃L. One of the ideas we investigated was to try and prove
that, in practice, x is necessarily confined in a bounded subset of R. We can show such a
result in the case of the standard Atlas model:
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Lemma 3.3.1. Under the same assumptions as Theorem 3.2.2, there exists a nondecreasing
function C : t 7→ C(t) > 0 such that:

∀x ≤ −C(t),
1

2
F0(2x− C(t)) ≤ Ft(x) ≤ F0

(x
2
+ C(t)

)
+ exp

(
− x2

C(t)

)
; (3.50)

∀x ≥ C(t),
1

2
[1− F0(2x+ C(t))] ≤ 1− Ft(x) ≤ 1− F0

(x
2
− C(t)

)
+ exp

(
− x2

C(t)

)
.

(3.51)

Recall the definition of the coefficients of the approximate adjoint problem:

B̃δ
η,ϵ(s, x) = λδ

η,ϵ(s, x)
[
1
2

(
η + Ãϵ(s, x)

)]1/2
, (3.52)

where we also defined

λδ
η(s, x) :=


0, (s, x) ∈ Gδ,

B̃(s, x)√
1
2
(η + Ã(s, x))

, (s, x) ∈ Fδ.
(3.53)

From these definitions, and recalling that Fδ := {(s, x) ∈ [0, t] × R : |F 2
s (x) − F 1

s (x)| ≥ δ},
we deduce that, for an appropriate choice of δ, we necessarily confined our variables in a
bounded box, i.e.

Fδ ⊂ [0, t]× [−C(t), C(t)]. (3.54)

Which would directly imply the boundedness of the regularized coefficients B̃δ
η,ϵ(s, x), since

their support is in Fδ by construction. The proof of Lemma 3.3.1, although quite long, is
fairly straightforward and can be adapted from [JR13, Section 3.2]. Let us justify that we
can indeed find M > 0 such that, for all |x| ≥ M ,∣∣F 2

s (x)− F 1
s (x)

∣∣ ≤ ∣∣F 2
s (x)− 1

∣∣+ ∣∣1− F 1
s (x)

∣∣ < δ. (3.55)

On the one hand, it is immediate that there exists M+ > 0 such that for all x ≥ M+:

1− F0

(x
2
− C(t)

)
<

δ

4
, (3.56)

exp

(
− x2

C(t)

)
<

δ

4
. (3.57)

Hence for all x ≥ M+, 1 − F 1
s (x) <

δ
2
(resp. F 2

s ). On the other hand, there exists M− > 0
such that, for all x ≤ −M−:

F0

(x
2
+ C(t)

)
<

δ

4
, (3.58)

exp

(
− x2

C(t)

)
<

δ

4
. (3.59)

Hence, for all x ≤ M−, F 1
s (x) <

δ
2
(resp. F 2

s ). Let M(δ) := max(M+,M−). Then, for all
|x| ≥ M(δ):
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∗ if x ≥ M(δ),
∣∣F̄s(x)

∣∣ ≤ |F 2
s (x)− 1|+ |F 1

s (x)− 1| ≤ δ;

∗ if x ≤ −M(δ),
∣∣F̄s(x)

∣∣ ≤ |F 2
s (x)|+ |F 1

s (x)| ≤ δ.

To conclude, for all x ∈ R, for all s ≤ t, |F 2
s (x)− F 1

s (x)| > δ ⇒ |x| < M. After making the
bound uniform in s ∈ [0, t], we finally get:

Fδ ⊂ [0, t]× [−M(δ),M(δ)]. (3.60)

Although we are able to prove this result in the case of a standard Atlas model, we were
unable to prove it in the context of a rank-based Ornstein-Uhlenbeck process. Nonetheless,
the idea is interesting, and would deserve further investigation by working directly on the
tail of the cumulative distribution function of our process. This is a first perspective for
future developments.

3.3.3 Comparison theorems and tail estimates

Another idea, which still has to do with the tail of the CDF of the rank-based Ornstein-
Uhlenbeck process, was to look into the comparison theorems referenced by Ikeda&Watanabe
(see [IW89, Chapter VI]). The first such theorem is interesting in our case. Let (Ω,F ,P) be
a probability space equipped with a reference filtration (Ft)t≥0. First, suppose we have the
following objects:

(i) A strictly increasing function ρ : [0,∞) → [0,∞) such that ρ(0) = 0 and∫
0+

ρ(ξ)−2 dξ = ∞; (3.61)

(ii) A continuous function σ : [0,∞)× R → R such that, for all t ≥ 0 and all x, y ∈ R,∣∣σ(t, x)− σ(t, y)
∣∣ ≤ ρ

(
|x− y|

)
; (3.62)

(iii) Two continuous functions b1, b2 : [0,∞)× R → R satisfying

b1(t, x) < b2(t, x) for all t ≥ 0, x ∈ R. (3.63)

Theorem 3.3.2. Let X1 and X2 be two real-valued, continuous and Ft-adapted processes,
and let B be a one-dimensional Ft-Brownian motion. Finally let β1 and β2 be two other
Ft-adapted and measurable processes. Assume that these processes satisfy, almost surely, the
following conditions:

(i) X i
t −X i

0 =
∫ t

0
σ
(
s,X i

s

)
dB(s) +

∫ t

0
βi
s ds, i = 1, 2;

(ii) X1
0 ≤ X2

0 ;

(iii) β1
t ≤ b1

(
t,X1

t

)
for every t ≥ 0;
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(iv) β2
t ≥ b2

(
t,X2

t

)
for every t ≥ 0.

Then, with probability one, we have

X1
t ≤ X2

t for all t ≥ 0. (3.64)

Moreover, if pathwise uniqueness of solutions holds for at least one of the stochastic differ-
ential equations

dX(t) = σ
(
t,X(t)

)
dB(t) + bi

(
t,X(t)

)
dt, i = 1, 2, (3.65)

then the same conclusion (3.64) remains valid under the weakened assumption

b1(t, x) ≤ b2(t, x) for all t ≥ 0, x ∈ R. (3.66)

Our goal is to apply this theorem in order to study the following SDE:{
Xt = X0 −

∫ t

0
[λ(H ∗ Ps(Xs))Xs − η(H ∗ Ps(Xs))] ds+

∫ t

0
σ(H ∗ Ps(Xs))dBs

Xt ∼ Pt,
(3.67)

in order to compare the rank-based Ornstein-Uhlenbeck with classic Ornstein-Uhlenbeck
processes, for which we can characterize the distribution precisely. We can introduce the
following modified drift coefficients:

{
b−(x) := −λ+x+ η−

b+(x) := −λ−x+ η+,
(3.68)

where we defined λ+ := sup
x∈[0,1]

λ(x), and λ− := inf
x∈[0,1]

λ(x) (resp. η+ and η−). The resulting

”framing” processes write:

X+
t = X0 +

1

2

∫ t

0

σ(Fs(X
+
s )) dBs +

∫ t

0

b+(X+
s ) ds (3.69)

X−
t = X0 +

1

2

∫ t

0

σ(Fs(X
−
s )) dBs +

∫ t

0

b−(X−
s ) ds (3.70)

There is still work to do in order to interpret the application of Theorem 3.3.2 and obtain
proper control over the distribution of our rank-based Ornstein-Uhlenbeck process. This
is our main perspective for developments on this topic, which opens a window for future
collaboration with Hélène and Dante.
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