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Abstract

This report investigates the large-population limit of a multilayer stochastic epidemic model
that incorporates both household and workplace structures. The model extends the classical
SIR framework by explicitly accounting for infections occurring within small, tightly con-
nected groups, as well as through global interactions. Building on the preprint [Kub23], we
provide a detailed construction of the individual-based process and establish its convergence
to a deterministic, measure-valued limit. Special attention is given to technical issues that
arise in the limiting system, such as the treatment of ratios that may become indetermi-
nate when the number of susceptibles vanishes, and the consistency between household- and
workplace-based representations of the susceptible population. We derive auxiliary lemmas,
and provide additional results ensuring the well-posedness of the model. Together, these
results clarify the mathematical foundations of multilayer epidemic models and highlight
their potential for capturing structured social interactions in large populations.



1 Introduction

Epidemic modeling plays a crucial role in understanding the spread of infectious diseases and
in evaluating intervention strategies. Traditional models often assume homogeneous mixing
among individuals (see, e.g., [KM27], [AM91]), which fails to account for the influence
of structured social interactions. To address this limitation, recent approaches introduce
heterogeneous contact patterns, particularly by modeling interactions within small, tightly
connected social groups such as households and workplaces (e.g., [BP19]).

The preprint “Large population limit for a multilayer SIR model including households
and workplaces” by Madeleine Kubasch [Kub23] presents a rigorous analysis of a stochastic
SIR model incorporating two levels of interaction: global (uniform random contacts across
the population) and local (structured by households and workplaces). The paper introduces
an individual-based stochastic process and establishes its convergence, as the population size
grows, to a deterministic measure-valued limit. In the case where infectious periods follow
an exponential distribution, the limiting process reduces to a finite-dimensional system of
ordinary differential equations (ODEs).

This report aims to carefully examine the structure, mathematical formulation, and main
results of Kubasch’s model. The focus is placed on the construction of the stochastic process,
its convergence to a deterministic limit, and the interpretation of the resulting dynamical
system. Rather than proposing modifications or extensions, the goal is to develop a deep
and rigorous understanding of the framework, serving as a foundation for future theoretical
or computational investigations.

Throughout this report, we use the following notation: Given a measurable space (E, E),
we let MP (E) denote the set of point measures on E, MF (E) the set of finite measures,
and M1(E) the set of probability measures. We define MP,1(E) := MP (E) ∩M1(E) as
the set of point probability measures on E. For a measure µ on E and a suitable function
f , we write ⟨µ, f⟩ :=

∫
E f dµ. The Dirac measure at x ∈ E is denoted by δx. For any metric

space E and integer m, we let C(E,Rm) be the set of continuous functions f : E → Rm,
and Cb(E,Rm) the subset of bounded continuous functions. Finally, C1

b (E,Rm) denotes the
set of bounded differentiable functions with bounded and continuous derivatives.

2 Model Overview

The model considers a population of fixed size K, where each individual belongs to exactly
one household and one workplace. These affiliations are assigned independently according
to fixed size distributions πH and πW . Within each layer (households, workplaces, general
population), contacts occur at different rates:

• λH : contact rate within households,

• λW : contact rate within workplaces,

1



• βG: global contact rate across the population, scaled by 1/K.

Individuals evolve according to classical SIR dynamics: they begin as susceptible (S),
may become infected (I), and eventually recover (R). The infectious period of each individual
is independently drawn from a general distribution ν, which allows for both Markovian
(exponential) and non-Markovian (non-exponential) settings. This generality is key to
capturing a broader range of epidemic behaviors.

2.1 Model Construction

Let (Ω,P,F) be a probability space. Let K ∈ N be the population size. For each ω ∈ Ω,
we define a random multilayer graph GK(ω) that encodes the structure of households and
workplaces.

Let nmax ∈ N be fixed, representing the maximum allowed size for any household or
workplace. Denote by

πH = (πH1 , π
H
2 , · · · , πHnmax

), πW = (πW1 , πW2 , · · · , πWnmax
)

the household and workplace size distributions, respectively.
Let {Xn}n be an i.i.d. sequence of random variables on Ω, with distribution Xn ∼ πH .

That is,
P(Xn = i) = πHi , ∀i ∈ {1, · · · , nmax}.

These variables will help us determine the sizes of households in the population.
The construction proceeds as follows: the size of the first household is X1(ω) if X1(ω) ≤

K; otherwise, it is truncated at K. We randomly assign individuals to form this household.
The remaining individuals are then used to form the next household using X2(ω), and so
on, until all individuals have been assigned to a household. An analogous procedure is used
to form the workplaces, using another i.i.d. sequence {Yn}n≥1 ∼ πW .

Example 2.1. Constructing GK(ω) with K = 6 individuals.
Assumptions:

• nmax = 3 (maximum size for both households and workplaces).

• Household size distribution: πH = (0.2, 0.5, 0.3).

• Workplace size distribution: πW = (0.1, 0.6, 0.3).

Household formation:
Start with 6 unassigned individuals. Simulate i.i.d. Xi ∼ πH :

1. X1 = 2 → Household of size 2: pick individuals A, E; 4 remain.

2. X2 = 3 → Household of size 3: pick individuals B, D, F; 1 remains.
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3. X3 = 3 → Household of size 1 (truncated): individual C; none remain.

Resulting households:

• Household 1: {A,E}

• Household 2: {B,D,F}

• Household 3: {C}

Workplace formation:
The same procedure is carried out independently for workplace assignments, using Yi ∼

πW , again starting with all 6 individuals:

1. Y1 = 3 → {A,C, F}; 3 remain.

2. Y2 = 2 → {D,E}; 1 remains.

3. Y3 = 2 → {B} (truncated); none remain.

Resulting workplaces:

• Workplace 1: {A,C, F}

• Workplace 2: {D,E}

• Workplace 3: {B}
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3 Mathematical Framework

3.1 Types

To analyze the model in the large population limit, the dynamics are formulated as a
measure-valued stochastic process. Each household or workplace is described by a type,
represented as a triplet (n, s, τ), where:

• n ∈ {1, · · · , nmax} is the fixed size of the group,

• s ∈ {0, · · · , n} is the number of susceptible individuals,

• τ ∈ Rnmax is a vector encoding the infection status of the non-susceptible members
of the structure. Each entry τj corresponds to the time remaining until recovery (if
positive) or the time elapsed since recovery (if negative) of an individual. Entries
beyond the number of non-susceptible members are set to zero.

This representation encodes both the epidemiological state of each structure and the corre-
lations arising from individuals belonging simultaneously to a household and a workplace,
which are crucial for accurately modeling transmission dynamics.

Let ω ∈ Ω and fix a population size K ≥ 1. Denote by KW and KH the number
of workplaces and households in the population, respectively. These are determined by
GK(ω), although their dependence on ω is suppressed in notation.

Define the set

E := {(n, s, τ) ∈ {1, · · · , nmax} × {0, · · · , nmax} × Rnmax : s ≤ n; ∀j > n− s, τj = 0}.

At any time t ≥ 0, the state of the k-th household is given by:

xHk (t) =
(
nHk , s

H
k (t), τHk (t)

)
∈ E.

Here:

• nHk is the fixed size of the household.

• sHk (t) is the number of susceptibles at time t.

• τHk (t) is a vector that encodes the epidemiological status of the n− s non-susceptible
individuals (either infected or recovered).

Each entry τHk,j(t), for j = 1, . . . , n − s, corresponds to a non-susceptible individual. If
τHk,j(t) > 0, the individual is currently infected and will recover in τHk,j(t) units of time.
If τHk,j(t) ≤ 0, the individual has already recovered, and the recovery occurred at time
t − |τHk,j(t)|. The ordering of the entries in τ is arbitrary and does not reflect any specific

4



assignment or label of individuals; it is introduced solely to allow consistent indexing and
tracking of infection status within the structure.

For indices beyond the number of infected and recovered individuals (i.e. j > nHk −
sHk (t)), τHk,j(t) is defined as 0 for convenience.

Workplaces are defined analogously. The ℓ-th workplace has type

xWℓ (t) =
(
nWℓ , s

W
ℓ (t), τWℓ (t)

)
∈ E.

Example 3.1. Types and their evolution
To illustrate how types (n, s, τ) are defined and how they evolve over time, we continue

the previous example with a population of 6 individuals labeled A through F.
Assume the following epidemic state at time t = 0:

• A is infected, and its remaining infection period is 3.7 units of time.

• B is recovered, having recovered 1.2 time units ago.

• C is susceptible.

• D is infected, and its remaining infection period is 2.5 units of time.

• E is susceptible.

• F is infected, and its remaining infection period is 4.8 units of time.

Based on the groupings previously constructed, the household types at time t = 0 are as
follows:

• Household 1 (A, E): size n = 2, with s = 1 susceptible (E) and one infected (A).

xH1 (0) = (2, 1, (3.7, 0, 0)).

• Household 2 (B,D,F): size n = 3 and three non-susceptible: D (infected, 2.5 units
left), B (recovered 1.2 units ago), and F (infected, 4.8 units left).

The order of τ is arbitrary. One possible representation:

xH2 (0) = (3, 0, (2.5,−1.2, 4.8))

• Household 3 (C): size n = 1, with C susceptible.

xH3 (0) = (1, 1, (0, 0, 0)).

Similarly, the workplace types at time t = 0 are:

5



• Workplace 1 (A,C,F):
xW1 (0) = (3, 1, (3.7, 4.8, 0)).

• Workplace 2 (D,E):
xW2 (0) = (2, 1, (2.5, 0, 0)).

• Workplace 3 (B):
xW3 (0) = (1, 0, (−1.2, 0, 0)).

Now suppose that at time t = 0.7, E becomes infected during a workplace contact and
receives an infectious period of 2.9 time units. The updated types at time t = 0.7 are:

• Household 1 (A, E): now both individuals are infected, so s = 0. A has 3 units left
(was 3.7), and E starts with 2.9.

xH1 (0.7) = (2, 0, (3, 2.9, 0)).

• Workplace 2 (D,E): both members now infected. D has 1.8 units remaining, and E
has just been infected.

xW2 (0.7) = (2, 0, (1.8, 2.9, 0)).

The rest of workplaces and households are just affected by the passing of time. For instance,
at time t = 0.7, the type of Household 2 is xH2 (0.7) = (3, 0, (1.8,−1.9, 4.1)).

3.2 Stochastic Process

Throughout this section, we assume that the underlying random graph is fixed. In other
words, we fix ω ∈ Ω and a population sizeK ≥ 1, and study the epidemic process conditional
on this realization of the graph.

Before formally defining the stochastic process that describes the evolution of the epi-
demic, we introduce the key ideas and notation used in its construction.

Denote by {ek}1≤k≤nmax the canonical basis of Rnmax . For any 0 ≤ t ≤ T and x =
(n, s, τ) ∈ E, define

Ψ(x, T, t) :=

(
n, s, τ −

n−s∑
k=1

(T − t)ek

)
∈ E. (3.1)

The function Ψ(x, T, t) is introduced to model the natural evolution of a structure (house-
hold or workplace) over time in the absence of new infections. In other words, suppose a
structure is in the state x at time t. Then, at time T , it will be in the state Ψ(x, T, t) if no
infection occurs in the meantime.

However, infections do occur, and when they do, they immediately alter the type of both
the individual’s household and workplace. The model assumes that whenever an infection
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happens, the infectious period of the newly infected individual is drawn randomly from a
distribution ν, independently of the current state. If the newly infected individual belongs
to the k-th household and the ℓ-th workplace, and receives an infectious period σ ∼ ν,
then the type of both the household and the workplace undergoes a jump defined by the
function:

j(x, σ) := (n, s− 1, τ + σen−s+1). (3.2)

This reflects that the number of susceptibles s decreases by 1, and a new entry σ is inserted
into the infectious period vector τ at position n−s+1, corresponding to the newly infected
individual.

We are now in a position to define the stochastic process (ζKt = (ζ
H|K
t , ζ

W |K
t ))t≥0, which

takes values in the product space MP,1 := MP,1(E) × MP,1(E). Here, ζH|K
t and ζ

W |K
t

denote the empirical distributions of household and workplace types at time t, respectively.
More precisely, for any t ≥ 0 and X ∈ {H,W}, the measure ζX|K

t is given by

ζ
X|K
t =

1

KX

KX∑
k=1

δxX
k (t),

where xXk (t) is the type of the k-th structure (household or workplace) at time t.
Since each household and workplace is represented by a type x = (n, s, τ), it is possible

to compute population-level quantities such as the average number of susceptibles and
infecteds per structure.

Given a type x = (n, s, τ), the number of infected individuals it contains is:

i(τ) :=
n−s∑
k=1

1τk>0,

that is, we count all non-susceptible individuals whose remaining infectious period is still
positive.

Then, at time t, the average number of infected individuals per household is defined as:

IH(t) :=
1

KH

KH∑
k=1

i(τHk (t)).

Similarly, one defines the average number of infecteds per workplace IW (t), using the work-
place types τWℓ (t).

Likewise, the average number of susceptibles per household is given by

SH(t) :=
1

KH

KH∑
k=1

sHk (t),

and analogously for SW (t).
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The total number of infecteds and susceptibles at time t is then

I(t) = KX · IX(t), S(t) = KX · SX(t), for X ∈ {H,W}.

This motivates the following consistency condition, which must hold for the model to be
coherent:

KHSH(t) = KWSW (t), KHIH(t) = KW IW (t), for all t ≥ 0. (3.3)

In other words, the total number of susceptibles and infecteds is the same whether counted
by household or by workplace.

Let NH := K
KH

denote the average household size, which is fixed over time. Similarly,
define NW := K

KH
for workplaces. Then,

I(t)

K
=
IX(t)

NX
, for X ∈ {H,W}.

This identity will be useful for simplifying certain expressions later on.
It is important to emphasize that the initial configuration ζK0 must encode these struc-

tural properties of the population. For example, it must ensure that the total number of
susceptibles and infecteds match between the household and workplace representations.

Additionally, a key condition must hold: for each initially infected or recovered individ-
ual, their remaining infectious period must be the same in both their household and their
workplace type. That is, almost surely,

{τHk,j(0) : 1 ≤ k ≤ KH , 1 ≤ j ≤ nHk −sHk (0)} = {τWℓ,j (0) : 1 ≤ ℓ ≤ KW , 1 ≤ j ≤ nWℓ −sWℓ (0)}.
(3.4)

This ensures that the infectious dynamics are coherent across layers, and will later be
justified rigorously in Lemma 3.1.

To describe the evolution of the epidemic through time, we model infection events as
points in Poisson point processes over appropriate spaces. These spaces encode the nec-
essary variables for each possible type of infection: global (G), within-household (H), and
within-workplace (W).

Each potential infection event is characterized by a tuple u that contains:

• A time-related random mark θ ∈ Rd
+, whose dimension d depends on the type of

infection (global, household, or workplace). The components of θ are continuous
random variables, used to determine whether the infection occurs and to assign the
individual to a household and a workplace.

• An index k ∈ {1, . . . ,KH} identifying a household structure. If the infection occurs,
the newly infected individual will be placed in household k, and the household type
will be updated accordingly.
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• An index ℓ ∈ {1, . . . ,KW } identifying a workplace structure, used similarly to update
the workplace type after infection.

• A sampled infectious period σ ∈ R+, drawn independently from the distribution ν,
and assigned to the newly infected individual.

In summary, each tuple u = (θ, k, ℓ, σ) fully specifies a potential infection event: when it
might occur, who is infected, which structures are affected, and for how long the infection
will last.

We now define the event spaces used to represent each type of infection:
For global infections, the event space is

UG := (R+)
3 × {1, · · · ,KH} × {1, · · · ,KW } × R+. (3.5)

Here, the components of θ = (θ1, θ2, θ3) ∈ R3
+ are used to determine whether the infection

occurs (θ1) and the assignments of the household (θ2) and workplace (θ3).
For household or workplace infections, the space is:

U := (R+)
2 × {1, · · · ,KH} × {1, · · · ,KW } × R+, (3.6)

where θ = (θ1, θ2) ∈ R2
+ plays a similar role, adapted to the layer where the infection

originates. We will denote this space by UH = UW := U when referring specifically to
household and workplace infections, respectively.

Each of these spaces is endowed with a product measure:

µY (du) = dθ ⊗ µ#(dk)⊗ µ#(dℓ)⊗ ν(dσ), Y ∈ {H,W,G},

where dθ is the Lebesgue measure on R2
+ or R3

+, µ# is the counting measure over house-
hold/workplace indices, and ν is the distribution of infected periods.

For any t ≥ 0 and any event u = (θ, k, ℓ, σ) ∈ UG with θ = (θ1, θ2, θ3), we define the
function IG(t, u) to decide whether the event triggers an actual infection:

IG(t, u) := 1{
θ1≤

βG
K

S(t)I(t),θ2≤
sH
k

(t)

S(t)
,θ3≤

sW
ℓ

(t)

S(t)

}. (3.7)

This means that an infection occurs with rate βG
K S(t)I(t), and the individual is assigned to

household k and workplace ℓ proportionally to the number of susceptibles.
Next, for any t ≥ 0 and any u = (θ, k, ℓ, σ) ∈ U with θ = (θ1, θ2), we define

IH(t, u) := 1{
θ1≤λHsHk (t)i(τHk (t)),θ2≤

sW
ℓ

S(t)

}. (3.8)

This indicates that an infection occurs within the k-th household with rate λHsHk (t)i(τHk (t)),

and the individual belongs to the ℓ-th workplace with probability sWℓ
S(t) .
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Similarly, we define

IW (t, u) := 1{
θ1≤λW sWℓ (t)i(τWℓ (t)),θ2≤

sH
k

(t)

S(t)

}. (3.9)

When an infection does occur, the corresponding structure (household or workplace)
must update its type. Thus, for any T ≥ t ≥ 0 and u = (θ, k, ℓ, σ) ∈ UG, we define

∆H(u, T, t). = δ(Ψ(j(xH
k (t−),σ),T,t))) − δ(Ψ(xH

k (t−),T,t)))

and
∆W (u, T, t) := δ(Ψ(j(xW

ℓ (t−),σ),T,t))) − δ(Ψ(xW
ℓ (t−),T,t))),

where Ψ and j are respectively given by (3.1) and (3.2).
Finally, for any T ≥ t ≥ 0 and u ∈ U , we define ∆H(u, T, t) and ∆W (u, T, t) as before.

Proposition 3.1. Define on the same probability space as ζK0 , and independently from ζK0 ,
three independent Poisson point measures QY on R+ × UY with intensity dtµY (du), for
Y ∈ {H,W,G}. Then ζK = (ζH|K , ζW |K) is defined as the unique strong solution taking
values in D(R+,MP,1) (the space of càdlàg functions from R+ to MP,1(E)2, equipped with
the Skorokhod topology) of the following equation: For any X ∈ {H,W} and T ≥ 0,

ζ
X|K
T =

1

K

( KX∑
j=1

δΨ(xX
j (0),T,0)+

∑
Y ∈{H,W,G}

∫ T

0

∫
UY

IY (t−, u)∆X(u, T, t)QY (dt, du)
)
, (3.10)

where UG and UH = UW = U are defined by Equations (3.5) and (3.6), respectively.

Proof. We construct the process ζK as the unique strong solution of the stochastic equation
by defining it recursively over a sequence of jump times generated by a dominating Poisson
process.

At any time t, the evolution of ζK is governed by infection events from three independent
Poisson point measures QH , QW , and QG, associated to household, workplace, and global
infections respectively.

Each event, if it triggers an infection, causes a jump in the process. Between jumps,
the system evolves deterministically according to the flow Ψ, which linearly decreases the
remaining infectious periods of non-susceptible individuals.

To control the process, we introduce a uniform upper bound on the total rate of infection
events, regardless of the current state:

λmax := nmax (λHnmax + λWnmax + βG) .

This dominates all possible instantaneous rates of infection from the three sources.
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Let (Tn)n≥1 be the jump times of a homogeneous Poisson process N = (Nt)t≥0 on R+

with rate λmax, and define T0 := 0. Then, the inter-arrival times Sn := Tn − Tn−1 are i.i.d.
exponential random variables with mean 1/λmax, and Tn → ∞ almost surely.

This gives a sequence of countable and locally finite jump times: in any finite time
interval [0, T ], the number of jumps is almost surely finite.

The process starts from an initial condition ζK0 , which satisfies the consistency conditions
described earlier.

For any interval [Tn, Tn+1), no infection occurs, so the system evolves deterministically.
That is, for each structure x ∈ E, its type at time t ∈ [Tn, Tn+1) is given by:

x(t) = Ψ(x(Tn), t, Tn).

This corresponds to linearly decreasing all nonzero entries in τ at unit speed, representing
the progression of infectious periods.

At each jump time Tn, we must determine:

1. Which type of infection occurs (household, workplace, or global),

2. Which structures are affected,

3. Whether the infection is accepted (via IY (T−
n , u)).

To do this, we simulate a uniform random variable U ∼ U [0, λmax] and partition the interval
[0, λmax] into disjoint segments associated to each source:

• Household infection if U ∈ [0, λHn
2
max],

• Workplace infection if U ∈ [λHn
2
max, λHn

2
max + λWn

2
max],

• Global infection otherwise.

Let Y ∈ {H,W,G} denote the selected infection type. We then sample a mark u =
(θ, k, ℓ, σ) from the intensity measure µY (du), and evaluate the indicator function IY (T−

n , u).

• If IY (T−
n , u) = 0, no infection occurs and the state remains unchanged.

• If IY (T−
n , u) = 1, the infection is accepted and the types of the affected structures

(household k, workplace ℓ) are updated by applying the transition map ∆X(u, T, Tn),
with X ∈ {H,W}.

We apply this procedure iteratively over all jump intervals [Tn, Tn+1), which defines the
process ζK = (ζ

H|K
t , ζ

W |K
t )t≥0 for all t ≥ 0.

By construction, the process is càdlàg (right-continuous with left limits). Moreover, it
takes values in MP,1(E)2, since the number of households and workplaces is finite and fixed.

The stochastic equation (3.10) holds by design of the jump mechanism and the form of
the Poisson point measures.
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Once the realizations of the Poisson point measures QH , QW , QG are fixed; that is, once
the jump times and event marks are given, the entire path of the process ζK is uniquely
determined. This guarantees strong (pathwise) uniqueness of the solution.

The construction follows the general framework of piecewise deterministic Markov pro-
cesses (PDMPs) as introduced by [Dav84], where the process evolves deterministically be-
tween random jump times generated by Poisson events.

The proof of the following result relies on the construction of the process and the con-
sistency conditions imposed on the initial state (particularly equation (3.4)). We do not
include the proof here, but it can be found in [Kub23]. The key point is that infection
events always update both the household and the workplace of the newly infected individ-
ual, preserving this consistency over time.

Lemma 3.1. Suppose that almost surely, KHSH(0) = KWSW (0) and equation (3.4) holds.
Then for any t ≥ 0, KHSH(t) = KWSW (t) and KHIH(t) = KW IW (t), almost surely.

With this framework in place, we are now in a position to examine the large population
limit of the model and derive its deterministic approximation, as presented in the next
sections.

4 Asymptotic Properties of the Population

We now turn to the analysis of the large-population limit of the model’s structural com-
ponents. The goal is to describe the asymptotic behavior of the empirical distributions of
household and workplace sizes, as well as certain ratios that will be fundamental in the
main convergence results.

4.1 Convergence of Empirical Size Distributions

We begin by proving that the empirical household and workplace size distributions converge
almost surely to their theoretical counterparts as the population size grows. Define

Ω∗ :=

{
ω ∈ Ω : (πH|K , πW |K)K≥1 −−−−→

K→∞
(πH , πW )

}
,

where πH|K and πW |K are the empirical household and workplace size distributions observed
in GK .

The following Lemma ensures that (πH|K , πW |K)K≥1 converges P-almost everywhere to
(πH , πW ).

12



Lemma 4.1. Let πH|K and πW |K be the empirical household and workplace size distribu-
tions observed in GK . Then,

(πH|K , πW |K)K≥1
P−a.s.−−−−→
K→∞

(πH , πW ).

Proof. We focus on the convergence of πH|K , as the argument for πW |K is analogous.
Let nmax be fixed. Denote the true household size distribution by πH = (πH1 , π

H
2 , · · · , πHnmax

),
where πHi is the probability of a household having size i ∈ {1, · · · , nmax}.

Let {Xn}n be a sequence of i.i.d. random variables with distribution πH . i.e.,

P(Xn = i) = πHi , ∀i ∈ {1, · · · , nmax}.

Fix m ∈ {1, · · · , nmax}. For n ≥ 1, let Zn := 1{Xn=m}. Since the variables Xn are i.i.d,
so are the variables Zn. Moreover,

E[Zn] = P(Xn = m) = πHm , ∀n ∈ N.

By the Law of large numbers,

Mn :=
1

n

n∑
k=1

Zk
a.s.−−−→

n→∞
πHm .

Define the set
Ω∗
m := {ω ∈ Ω :Mn(ω) −−−→

n→∞
πHm}.

Now, for each K ≥ 1, define

NK := min
{
n :

n∑
i=1

Xi ≥ K
}
. (4.1)

This represents the number of full households needed to cover at least K individuals.
Define the empirical frequency (excluding the possible incomplete last household):

π̃H|K
m :=MNK

(ω).

Note that NK → ∞ as K → ∞. Thus, since Mn(ω) → πHm for ω ∈ Ω∗
m, it follows that

π̃H|K
m −−−−→

K→∞
πHm .

Let SNK
:= K −

∑NK−1
n=1 Xn(ω) be the size of the (possibly incomplete) last household.

Then, the true empirical proportion of households of size m among the NK used is

πH|K
m = π̃H|K

m +
1

Nk

[
1{SNK

=m} − 1{XNK
(ω)=m}

]
. (4.2)
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It follows that ∣∣∣πH|K
m − π̃H|K

m

∣∣∣ ≤ 1

NK
,

and since NK → ∞ as K → ∞, we conclude that

πH|K
m −−−−→

K→∞
πHm , for all ω ∈ Ω∗

m.

Define Ω∗
H = ∩nmax

m=1 Ω
∗
m. Then, for every ω ∈ Ω∗

H , we have convergence of the full vector:

πH|K = (π
H|K
1 , · · · , πH|K

nmax
) −−−−→

K→∞
πH .

A completely analogous argument gives that πW |K → πW almost surely. Thus, (πH|K , πW |K) →
(πH , πW ) almost surely.

4.2 Numerical Illustration of Convergence

To illustrate the almost sure convergence established in Lemma 4.1, we present a numeri-
cal simulation showing how the empirical household size distribution approaches the true
distribution for increasing population sizes.

Suppose the true household size distribution is given by

πH = (πH1 , π
H
2 , π

H
3 ) = (0.2, 0.5, 0.3).

We simulate a sequence of households according to this distribution and keep adding
them until we reach a total population size K. For each value of K, we compute the
empiricial household size distribution πH|K and compare it with the true distribution πH .

Simulation
1 import numpy as np
2 import matplotlib.pyplot as plt
3

4 # True household size distribution
5 pi_H = np.array ([0.2, 0.5, 0.3])
6 sizes = [1, 2, 3]
7

8 # Simulate a large sequence of household sizes
9 np.random.seed (42)

10 X = np.random.choice(sizes , p=pi_H , size =10000)
11

12 # Define a range of K values to evaluate convergence
13 K_values = np.linspace (100, 7000, 100, dtype=int)
14

15 # Store empirical proportions for each household size across K
16 empirical_curves = {size: [] for size in sizes}
17

18 for K in K_values:

14



19 total = 0
20 i = 0
21 household_counts = {1: 0, 2: 0, 3: 0}
22 while total < K and i < len(X):
23 size = X[i]
24 if total + size > K:
25 break
26 household_counts[size] += 1
27 total += size
28 i += 1
29 N_K = sum(household_counts.values ())
30 for size in sizes:
31 empirical_curves[size]. append(household_counts[size] / N_K if N_K >

0 else 0)
32

33 # Plotting the convergence curves
34 plt.figure(figsize =(8, 5))
35 for size in sizes:
36 plt.plot(K_values , empirical_curves[size], label=f"Size {size}", lw=2)
37

38 # Plot horizontal lines for true proportions
39 for i, true_val in enumerate(pi_H):
40 plt.axhline(y=true_val , linestyle=’dashed ’, color=’black’, alpha =0.6,
41 label=f"True pi^H" if i == 0 else None)
42

43 plt.xlabel("Total population size K")
44 plt.ylabel("Empirical proportion")
45 plt.title("Convergence of Empirical Household Size Distribution to True pi^

H")
46 plt.legend ()
47 plt.grid(True)
48 plt.tight_layout ()
49 plt.show()

Figure 1: Output of the simulation code: convergence of empirical household size distribu-
tions.
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Figure 4.2 above shows the empirical household size distribution πH|K computed from
simulations for increasing values of K. As K grows, each empirical frequency converges to
the corresponding component of the true distribution πH = (0.2, 0.5, 0.3), consistent with
the Law of Large Numbers. Dashed horizontal lines indicate the true values.

4.3 Limiting Ratios of Households and Workplaces

Next, we determine the limiting ratios of the number of households and workplaces to the
total population size.

Let X be a random variable with distribution πH . Note that

0 < E[X] =

nmax∑
n=1

n · P[X = n] <∞.

Proposition 4.1. Let X be a random variable with distribution πH . Then, as K → ∞,

KH

K

a.s.−−→ αH :=
1

E[X]
.

Proof. Recall that households are constructed from an i.i.d. sequence {Xn}n ∼ πH . For
m ∈ N, let Sm :=

∑m
i=1Xi be the cumulative number of individuals after m households.

By the Strong Law of Large Numbers,

Sm
m

a.s.−−→ α−1
H as m→ ∞. (4.3)

For K ≥ 1, define

NK := min
{
n :

n∑
i=1

Xi ≥ K
}
.

By construction, KH = NK and we have

SKH−1 < K ≤ SKH
.

Dividing the inequality by KH gives

SKH−1

KH
<

K

KH
≤ SKH

KH
.

Since KH → ∞ as K → ∞, (4.3) implies

SKH

KH

a.s.−−−−→
K→∞

α−1
H .

Moreover,
SKH−1

KH
=
SKH

KH
− XKH

KH

a.s.−−−−→
K→∞

α−1
H ,
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because XKH
is bounded and KH → ∞.

Applying the squeeze theorem, we deduce that

K

KH

a.s.−−−−→
K→∞

α−1
H .

Taking the reciprocals yields
KH

K

a.s.−−−−→
K→∞

αH .

This completes the proof.

Proceeding analogously for workplaces, we obtain the following proposition:

Proposition 4.2. Let Y be a random variable with distribution πW . Then, as K → ∞,

KW

K

a.s.−−→ αW :=
1

E[Y ]
.

The previous two results establish the asymptotic ratios of the number of households
and workplaces to the total population size. As a direct consequence, we can also describe
the relationship between the average number of susceptibles computed from each layer.

Lemma 4.2. For every t ≥ 0,

⟨ηHt , s⟩ = 0 ⇐⇒ ⟨ηWt , s⟩ = 0.

Proof. Recall that for a population of size K,

⟨ζH|K
t , s⟩ = S(t)

KH
, ⟨ζW |K

t , s⟩ = S(t)

KW
,

where S(t) denotes the total number of susceptible individuals. Since ζH|K
t → ηHt almost

surely and s ∈ Cb(E), it follows that

S(t)

KH

a.s.−−−−→
K→∞

⟨ηHt , s⟩.

If ⟨ηHt , s⟩ = 0, then S(t)/KH → 0 almost surely. Using that KH
K → αH > 0, we deduce

S(t)

K
=
KH

K
· S(t)
KH

a.s.−−−−→
K→∞

0.

Consequently,
S(t)

KW
=
S(t)

K
· K

KW

a.s.−−−−→
K→∞

0,

whcih implies ⟨ηWt , s⟩ = 0. The converse follows by symmetry.
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Remark 4.1. Interpretation of Lemma 4.2.
This result confirms that if no susceptibles remain in households, then none remain in

workplaces (and vice versa). In other words, both representations are consistent and vanish
simultaneously.

5 Main Results

In this section, we summarize the key assumptions and results of [Kub23] describing the
large population limit of the model. We begin by outlining the required regularity of initial
conditions, then present the main convergence result and its reduction to a dynamical
system in the Markovian case.

5.1 Assumptions on Initial Conditions

To ensure tightness and identify the limit, we impose the following regularity assumption
on the sequence of initial conditions (ζK0 )K≥1.

Assumption 5.1. For any X ∈ {H,W} and T ≥ 0,

(i)

lim
N→∞

sup
K≥1

E

[
sup

0≤t≤T

1

KX

KX∑
k=1

nmax∑
i=1

1{nX
k −sXk (0)≥i,|τXk,i(0)−t|≥N}

]
= 0.

(ii) For any c ∈ R and i ∈ {1, · · · , nmax},

lim
ϵ→0

sup
K≥1

E

[
1

KX

KX∑
k=1

1{nX
k −sXk (0)≥i,|(τXk,i(0)−T )−c|≤ϵ}

]
= 0.

These conditions ensure that the initial distributions of infectious periods are well-
behaved: (i) prevents extreme values from concentrating, and (ii) avoids mass accumulation
at specific time points. Together, they guarantee regularity in the initial data.

5.2 Convergence to the Deterministic Limit

We now turn to the large population limit of the measure process (ζK)K≥1.
Let f ∈ C1

b (R+ × E,R) and define, for every t ≥ 0 and x = (n, s, τ) ∈ E,

ft(x) := f(t, x), fIt (x) := ⟨ν, ft(j(x, ·))⟩. (5.1)

We introduce the differential operator A, which governs the evolution of test functions
under the deterministic flow (i.e., in the absence of new infections). For x = (n, s, τ) ∈ E,

Aft(x) := ∂tf(t, x)−
n−s∑
k=1

∂τkf(t, x). (5.2)

18



Let M1 := M1(E)2 be the space of pairs of probability measures on E, and let n(x) = n,
s(x) = s, i(x) = i(τ) denote the total number of individuals, the number of susceptibles,
and the number of infectious individuals in a structure of type x, respectively.

We are now ready to state the main convergence theorem:

Theorem 5.1. Let ω ∈ Ω∗
G. Suppose that (ζK0 )K≥1 satisfies Assumption 5.1 and converges

in law to η0 ∈ M1. Then (ζK)K≥1 converges in D(R+,M1(E))2 to η = (ηH , ηW ) defined
as the unique solution of the following system of equations: For any f ∈ C1

b (R+ × E,R),
for any T ≥ 0,

⟨ηXT , fT ⟩ =⟨ηX0 , f0⟩+
∫ T

0
⟨ηXt ,Aft⟩dt+ λX

∫ T

0
⟨ηXt , si(fIt − ft)dt

+λX̄

∫ T

0

⟨ηX̄t , si⟩
⟨ηX̄t , s⟩

⟨ηXt , s(fIt − ft)⟩dt+ βG

∫ T

0

⟨ηHt , i⟩
⟨ηH0 ,n⟩

⟨ηXt , s(fIt − ft)⟩dt.
(5.3)

This equation describes the evolution of the limiting measure ηX . Each term represents a
different mechanism of change: The first integral corresponds to natural aging of infectious
periods and time variation. The second integral captures within-layer infections. The third
term reflects cross-layer infections from the other structure type. The final term accounts
for global infections in the population.

Let s(t) and i(t) denote the proportions of susceptible and infectious individuals in the
population at time t, according to the distribution ηt. We define the set

S := {(n− i, i) : 2 ≤ n ≤ nmax, 0 ≤ i ≤ n− 1}.

For (S, I) ∈ S, let nHS,I(t) be the proportion of households containing S susceptible indi-
viduals and I infectious individuals at time t, according to the distribution ηHt . Similarly,
define nWS,I(t) for workplaces.

We also define, for X ∈ {H,W},

τG(t) = βG i(t), τX(t) =
λX
mX

∑
(S,I)∈S

SI nXS,I(t).

In [Kub23], it is shown that if the distribution ν of infectious periods is exponential
with parameter γ, then, as the population size grows, the proportion of susceptible and
infectious individuals converges to the solution of a deterministic dynamical system. In
this setting, at time t = 0, a fraction ϵ of uniformly chosen individuals are infected in
an otherwise susceptible population. Furthermore, the remaining infectious period of each
initially infected individual is assumed to be distributed according to ν, independently of
all other individuals.
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Theorem 5.2. Let ϵ > 0 and suppose that η satisfies equation (5.3) with η0 = η0,ϵ. Then,
the functions (s, i, ηXS,I : X ∈ {H,W}, (S, I) ∈ S) are characterized as being the unique
solution of the following dynamical system: for any t ≥ 0, X ∈ {H,W} and (S, I) ∈ S,

d

dt
s(t) =− (τH(t) + τW (t) + τG(t)s(t)),

d

dt
i(t) =− d

dt
s(t)− γi(t),

d

dt
ηXS,I(t) =−

(
λXSI + τX̄

S

s(t)
+ τG(t)S + γI

)
ηXS,I(t)

+ γ(I + 1)ηXS,I+1(t)1{S + I < nmax}

+

(
λX(S + I)(I − 1) + γX̄

S + 1

s(t)
+ τG(t)(S + I)

)
ηXS+1,I−1(t)1{I ≥ 1},

(5.4)

with initial conditions given by

s(0) = 1− ϵ; i(0) = ϵ; ηXS,I(0) =

(
S + I

I

)
πXS+I(1− ϵ)SϵI . (5.5)

Remark 5.1. Interpretation of system (5.4). The first equation of the dynamical
system describes the decrease in the proportion of susceptible individuals whenever a new
infection occurs, either in the general population or within a household or workplace. The
second equation accounts for the flow of individuals from the susceptible state to the infected
state, who then leave the infected class at rate γ. Finally, the third equation governs the
evolution of the distribution of structures: a structure of type (S, I) changes its composition
either when one of its susceptible members becomes infected (in any layer of the graph) or
when one of its infected members recovers. These events respectively produce transitions
(S, I) → (S, I + 1) and (S, I) → (S + 1, I − 1).

Remark 5.2. In several expressions throughout the model, we encounter ratios of the form:

R
H|X
t :=

⟨ζH|X
t , si⟩

⟨ζH|X
t , s⟩

, X ∈ {H,W},

interpreted as the average number of infectious individuals per susceptible in structures of
type X at time t. A similar expression appears in the limiting system:

RX
t :=

⟨ηXt , si⟩
⟨ηXt , s⟩

.

These ratios are well-defined as long as ⟨ζX|K
t , s⟩ or

〈
ηXt , s

〉
are strictly positive. However,

as the epidemic progresses and the number of susceptibles decreases, it may happen that
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⟨ζX|K
t , s⟩ = 0 or

〈
ηXt , s

〉
= 0. In such cases, the numerator must also vanish, since there

can be no susceptible-infectious pairs, and the ratio becomes the indeterminate form 0
0 .

To resolve this, we adopt the convention:

R
X|K
t := 0 whenever ⟨ζX|K

t , s⟩ = 0,

and analogously for RX
t . This choice ensures that the model remains well-defined and con-

sistent with the epidemic dynamics. Indeed, if no susceptibles remain in layer X, no within-
layer infections can occur. Thus, the infection rate per susceptible becomes irrelevant, and
assigning the ratio the value zero accurately reflects the absence of further risk.

This convention is particularly important in the limiting system, where one encounters
cross-layer infection terms of the form:

⟨ηXt , si⟩
⟨ηXt , s⟩

· ⟨ηX̄t , s(fIt − ft)⟩,

with X̄ denoting the complementary layer (i.e., H̄ = W , W̄ = H). These terms describe
the contribution of layer X to the infection rate in layer X̄. However, if

〈
ηXt , s

〉
= 0, layer

X cannot exert any epidemiological influence on other layers, and the corresponding con-
tribution should vanish. Defining 0/0 := 0 ensures this behavior, preserving the continuity
and boundedness of the equations, and avoiding singularities or discontinuities in degenerate
scenarios.

6 Proof of Theorem 5.1

In this section, we outline the main ideas in the proof of the convergence of the stochastic
process ζK = (ζ

H|K
t , ζ

W |K
t ) to the deterministic limit η = (ηHt , η

W
t ), as stated in Theorem

5.1. The proof involves two main steps: establishing uniqueness and continuity of the limit,
and proving tightness of the sequence (ζK) in the Skorokhod space. As we will explain
in the proof of Proposition 6.1, some arguments in the proof of uniqueness provided by
[Kub23] seem problematic and would require further justification. Unfortunately, we were
unable to write a complete and detailed proof based on it.

6.1 Uniqueness and Continuity of the Solution of Equation (5.3)

To establish the uniqueness of the solution of equation (5.3), we will need the following
Lemma:

Lemma 6.1. Let f ∈ Cb(E,R). There exists a sequence {fk}k≥1 taking values in C1
b (E,R)

such that fk converges pointwise to f and supk≥1 ∥fk∥∞ ≤ ∥f∥∞.
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Proof. Let ψ ∈ C∞
c (Rnmax) be a standard mollifier, i.e., a nonnegative, smooth function

with compact support and such that
∫
Rnmax ψ(x)dx = 1. For k ≥ 1, define the rescaled

mollifier
ψk(x) := knmaxψ(kx).

The sequence {ψk}k≥1 satisfies limk→∞ ψk = δ0 in the sense of distributions; that is, for
any test function ϕ ∈ C∞

c (Rnmax),∫
ϕ(x)ψk(x)dx→ ϕ(0) as k → ∞.

Let f ∈ Cb(E,R). For k ≥ 1, define the function fk : E → R by convolving f with ψk

in the last variable:
fk(n, s, τ) := (f(n, s, ·) ∗ ψk)(τ).

Since f ∈ Cb(E,R), it follows that, for every x ∈ E, limk→∞ fk(x) = f(x). Moreover, as∫
Rnmax ψk(x)dx = 1 for any k ≥ 1, we have that ∥fk∥∞ ≤ ∥f∥∞. Finally, as the convolution

of a bounded function with a smooth mollifier yields a smooth function, each fk is smooth
in the variable τ . The partial derivatives are also bounded due to the boundedness of f
and the properties of ψk. Therefore, fk ∈ C1

b (E,R) for all k ≥ 1.

For an element η = (η1, η2) ∈ M1, we define its total variation norm by ∥η∥TV =
∥η1∥TV ∨ ∥η1∥TV .

Proposition 6.1. Let η∗ ∈ M1. Then, equation (5.3) admits at most one measure-valued
solution η which belongs to C(R+, (M1, ∥·∥TV )), such that η0 = η∗.

Proof. In [Kub23], a complete proof is provided; however, upon attempting to reconstruct
the argument, we observed that certain nontrivial terms (particularly those involving quo-
tients) require additional justification. It seems that some intermediate steps are either
omitted or left implicit in the original source. For this reason, we do not reproduce the full
derivation here.

6.2 Tightness of (ζK)K≥1

We will now focus on proving the tightness of (ζK)K≥1 in D(R+, (MF (E), v))2, where
v denotes the vague topology on MF (E). In order to do this, we will introduce some
preliminary results.

Lemma 6.2. Let f ∈ C1
b (R+ × E,R). Then, for any T ≥ t0 ≥ 0 and any x ∈ E,

f(T,Ψ(x, T, t0)) = f(t0, x) +

∫ T

t0

Af(t,Ψ(x, t, t0))dt,

where Ψ and A are defined by (3.1) and (5.2), respectively.
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Proof. Fix x = (n, s, τ) ∈ E and t0 ∈ R+, and consider the function gt0,x : [t0,∞) → R
defined by

gt0,x(T ) := f(T,Ψ(x, T, t0)).

We will show that gt0,x ∈ C1(R+), and that its derivative satifies

d

dT
gt0,x(T ) = Af(T,Ψ(x, T, t0)),

which yields the result upon integration.
To compute the derivative, define the auxiliary function fn,s : R+ × Rnmax → R by

fn,s(u, v) := f(u, (n, s, v)), and define ht0,x : R+ → R+ × Rnmax by

ht0,x(t) :=

(
t, τ −

n−s∑
k=1

(t− t0)ek

)
,

where ek is the k-th canonical basis vector in Rnmax . Then we can write gt0,x(t) =
fn,s(ht0,x(t)), and since both fn,s and ht0,x are continuously differentiable, so is their com-
position.

Using the chain rule, we compute

d

dt
gt0,x(t) = ∂1fn,s(ht0,x(t))−

n−s∑
k=1

∂k+1fn,s(ht0,x(t)),

where the negative signs appear because each component τk is decreasing with t. Note
that ∂1fn,s(u, v) = ∂tf(u, (n, s, v)), and ∂k+1fn,s(u, v) = ∂τkf(u, (n, s, v)). Therefore, the
derivative of gt0,x satisfies

d

dt
gt0,x(t) = Af(t,Ψ(x, t, t0)).

Integrating both sides from t0 to T , we obtain

f(T,Ψ(x, T, t0)) = f(t0, x) +

∫ T

0
Af(t,Ψ(x, t, t0))dt.

as claimed.

We introduce the notation S = {H,W,G}. Additionally, for any f ∈ Cb(R+ × E,R),
any t ≥ 0 and u = (θ, k, ℓ, σ) ∈

⋃
Y ∈S UY (with the spaces UY defined by (3.6) and (3.5)),

we define

fHt,u := f(t, j(xHk (t), σ)− f(t, xHk (t)) and fWt,u := f(t, j(xWℓ (t), σ))− f(t, xWℓ (t)). (6.1)
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Proposition 6.2. Let f ∈ C1
b (R+ ×E,R), and let ft(·) := f(t, ·). Then, for all T ≥ 0 and

X ∈ {H,W},〈
ζ
X|K
T , fT

〉
=
〈
ζ
X|K
0 , f0

〉
+

∫ T

0

〈
ζ
X|K
t ,Aft

〉
dt+

1

KX

∑
Y ∈S

∫ T

0

∫
UY

IY (t−u)fXt−,uQY (dt, du),

(6.2)
where the functions IY are given by (3.7), (3.8) and (3.9).

Proof. Let f ∈ C1
b (R+ × E,R) and T ≥ 0. We will prove the result for X = H, since the

case for H =W is analogous. By equation (3.10), we have

〈
ζ
H|K
T , fT

〉
=

1

KH

KH∑
j=1

fT (Ψ(xHj (0), T, 0))

+
1

KH

∑
Y ∈{H,W,G}

∫ T

0

∫
UY

IY (t−, u)⟨∆H(u, T, t), fT ⟩QY (dt, du).

(6.3)

Applying Lemma (6.2), we can write the first summand as

1

KH

KH∑
j=1

(
f0(x

H
j (0)) +

∫ T

0
Aft(Ψ(xHj (0), t, 0))dt

)
.

On the other hand, recall that, for any u = (θ, k, ℓ, σ) ∈
⋃

Y ∈S UY and any 0 ≤ t ≤ T ,

⟨∆H(u, T, t), fT ⟩ = fT (Ψ(j(xHk (t−), σ), T, t))− fT (Ψ(xHk (t−), T, t)). (6.4)

Thus, we can write the second summand in (6.3) as

1

KH

∑
Y ∈S

∫ T

0

∫
UY

IY (t−, u)
[
fT (Ψ(j(xHk (t−), σ), T, t))− fT (Ψ(xHk (t−), T, t))

]
QY (dt, du).

Using (6.2), this becomes

1

KH

∑
Y ∈S

∫ T

0

∫
UY

IY (t−, u)
(∫ T

t

[
Afz(Ψ(j(xHk (t−), σ), z, t))−Afz(Ψ(xHk (t−), z, t))

])
QY (dt, du)

+
1

KH

∑
Y ∈S

∫ T

0

∫
UY

IY (t−, u)
[
f(t, j(xHk (t−), σ))− f(t, xHk (t−))

]
QY (dt, du).
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By (6.4) and (6.1), we conclude that

〈
ζ
H|K
T , fT

〉
=

1

KH

KH∑
j=1

(
f0(x

H
j (0)) +

∫ T

0
Aft(Ψ(xHj (0), t, 0))dt

)

+
1

KH

∑
Y ∈S

∫ T

0

∫
UY

IY (t−, u)
(∫ T

t
⟨∆H(u, z, t),Afz⟩dz

)
QY (dt, du)

+
1

KH

∑
Y ∈S

∫ T

0

∫
UY

IY (t−, u)fXt−,uQY (dt, du).

Then, as f and the indicator functions IY are bounded, we can apply Fubini’s Theorem
and obtain:

〈
ζ
H|K
T , fT

〉
=

1

KH

KH∑
j=1

f0(x
H
j (0)) +

1

KH

∑
Y ∈S

∫ T

0

∫
UY

IY (t−, u)fXt−,uQY (dt, du)

+
1

KH

∫ T

0

KH∑
j=1

Afz(Ψ(xHj (0), z, 0)) +
∑
Y ∈S

∫ z

0

∫
UY

IY (t−, u)⟨∆H(u, z, t),Afz⟩QY (dt, du)

dz.
This expression coincides exactly with equation (6.2).

For Y ∈ S, let
Q̃Y (dt, du) = QY (dt, du)− dtµY (du)

be the compensated martingale-measure associated to QY . Then, for f ∈ C1
b (R+ × E,R)

and X ∈ {H,W}, 〈
ζ
X|K
T , fT

〉
=M

X|K
T (f) + V

X|K
T (f),

where

M
X|K
T :=

1

KX

∑
Y ∈S

∫ T

0

∫
UY

IY (t−, u)fXt−,uQ̃Y (dt, du)

and

V
X|K
T (f) :=

〈
ζ
X|K
0 , f0

〉
+

∫ T

0

〈
ζ
X|K
t ,Aft

〉
dt+

1

KX

∑
Y ∈S

∫ T

0

∫
UY

IY (t, u)fXt,uµY (du)dt.

Proposition 6.3. Let f ∈ C1
b (R+×E,R) and let X ∈ {H,W}. Then the process (MX|K

T (f))T≥0

is a square-integrable martingale, with quadratic variation〈
MX|K(f)

〉
T
=

1

KX

∫ T

0

〈
ζ
X|K
t ,HX

t ((f2t )
I − 2fIt ft + f2t )

〉
dt,
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where, for each t ≥ 0 and x ∈ E,

HX
t (x) = βG

IH(t)

NH
s(x) + λXs(x)i(x) + λX̄

〈
ζ
X̄|K
t , si

〉
SX̄(t)

s(x).

Proof. Let f ∈ C1
b (R+ × E,R) and X ∈ {H,W}. Note that MX|K

T (f) can be decomposed
as:

M
X|K
T (f) =

∑
Y ∈S

M
X|K
Y,T (f),

where, for each Y ∈ S and T ≥ 0,

M
X|K
Y,T (f) :=

∫ T

0

∫
UY

1

KX
IY (t−, u)fXt,uQ̃Y (dt, du).

Since f is bounded, for each Y ∈ S, we have

E

[∫ T

0

∫
UY

(
1

KX
IY (t, u)fXt,u

)2

µY (du)dt

]
<∞.

Thus, each process (M
X|K
Y,T (f))T≥0 is square-integrable, and so is the sum (M

X|K
T (f))T≥0.

Since the Poisson measures QH,K , QW |K and QG|K are independent, the total quadratic
variation decomposes as 〈

MX|K(f)
〉
T
=
∑
Y ∈S

〈
M

X|K
Y (f)

〉
T
.

We now compute the quadratic variation explicitly in the case X = H, starting with
Y = H:

E
[〈
M

H|K
H (f)

〉
T

]
= E

[∫ T

0

∫
UH

(
1

KH
IH(t, u)fHt,u

)2

µH(du)dt

]

=
1

K2
H

E
[∫ T

0

∫
UH

IH(t, u)(fHt,u)
2µH(du)dt

]
.
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We compute the inner integral:∫
UH

IH(t, u)(fHt,u)
2µH(du)

=

KH∑
k=1

KW∑
ℓ=1

λHs
H
k (t)i(τHk (t)) ·

sWℓ (t)

S(t)

∫
(f(t, j(xHk (t), σ))− f(t, xHk (t)))2ν(dσ)

=

KH∑
k=1

λHs
H
k (t)i(τHk (t))

∫
(f(t, j(xHk (t), σ))− f(t, xHk (t)))2ν(dσ),

where the second equality follows from the fact that
∑KW

ℓ=1 s
W
ℓ (t) = S(t).

Since, for any k ∈ {1, · · · ,KH} and t ∈ [0, T ], sHk (t) ≤ nmax and iHk (t) ≤ nmax almost
surely, we obtain the bound

E
[〈
M

H|K
H (f)

〉
T

]
≤ 1

KH
λH(nmax)

24∥f∥2∞T. (6.5)

Moreover, as KH ≥ K
nmax

and ∥f∥∞ <∞, we get

E
[〈
M

H|K
H (f)

〉
T

]
≤ 4

K
λH(nmax)

3∥f∥2∞T <∞,

which confirms square integrability.
Next, observe the identity:∫

(f(t, j(x, σ))− f(t, x))2 ν(dσ)

=

∫
f(t, j(x, σ))2ν(dσ)− 2f(t, x)

∫
f(t, j(x, σ))ν(dσ) + f(t, x)2

= (f2t )
I(x)− 2ft(x) · fIt (x) + ft(x)

2.

Thus, by definition of ζH|K
t , we have

1

KH

KH∑
k=1

sHk (t)i(τHk (t))

∫ (
f(t, j(xHk (t), σ))− f(t, xHk (t))

)2
ν(dσ)

=
〈
ζ
H|K
t , si

(
(f2t )

I − 2fIt ft + f2t
)〉
.

Putting everything together, the quadratic variation is given by〈
M

H|K
H (f)

〉
T
=

∫ T

0

∫
UH

(
1

KH
IH(t, u)fHt,u

)2

µH(du)dt

=
λH
KH

∫ T

0

〈
ζ
H|K
t , si

(
(f2t )

I − 2fIt ft + f2t
)〉
dt.
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Similarly,
(
M

H|K
W,T (f)

)
T≥0

and
(
M

H|K
G,T (f)

)
T≥0

are square integrable martingales with

quadratic variations given by

〈
M

H|K
W (f)

〉
T
=
λW
KH

∫ T

0

〈
ζ
W |K
t , si

〉
SW (t)

〈
ζ
H|K
t , s

(
(f2t )

I − 2fIt ft + f2t
)〉
dt

and 〈
M

H|K
G (f)

〉
T
=

βG
KH

∫ T

0

IH(t)

NH

〈
ζ
H|K
t , s

(
(f2t )

I − 2fIt ft + f2t
)〉
dt.

This completes the argument for (M
H|K
T (f))T≥0. An analogous reasoning applies to

(M
W |K
T (f))T≥0, thereby completing the proof.

Now, we will proceed to prove the tightness of (ζK)K≥1, endowing MF (E) with the
vague topology.

Proposition 6.4. Under the assumptions of Theorem 5.1, the sequence (ζK)K≥1 is tight
in D(R+, (MF (E), v))2.

Proof. Rather than following the proof strategy used in [Kub23], we adopt an approach
similar to that of [GZN25, Lemma 4.6]. In particular using the tightness criterion stated
in [GZN25, Lemma 4.5].

Let T > 0. As stated in [GZN25], it suffices to prove that for any f ∈ C0(E) ∩ C1
b (E),

the sequence
(
⟨ζH|K , f⟩

)
K≥1

is tight in D([0, T ],R). We will use the tightness criterion in
[GZN25, Lemma 4.5] to prove this. That is, we will prove that for any ϵ > 0,

lim
δ→0

lim sup
K→∞

sup
t∈[0,T ]

1

δ
P
(

sup
0≤r≤s

|⟨ζt+r, f⟩ − ⟨ζt, f⟩| > ϵ

)
= 0.

Let ϵ > 0. Define C := 4λH(nmax)
3∥f∥2∞ and take δ = ϵ

2(∥Af∥∞+C∥f∥∞) . It follows from
(6.5) that, for any t, r ≥ 0,

E
[
⟨M(f)⟩t+r − ⟨M(f)⟩t

]
≤ r · C

K
∥f∥∞.

Thus, by Doob’s inequality, we have

P

(
sup

0≤r≤δ
|Mt+r(f)−Mt(f)| >

ϵ

2

)
≤ 4

ϵ2
E
[
(Mt+δ(f)−Mt(f))

2
]

=
4

ϵ2
E
[
⟨M(f)⟩t+δ − ⟨M(f)⟩t

]
≤4δ · C1

ϵ2K
∥f∥∞.

(6.6)
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On the other hand, for any t, s ≥ 0,

|Vt+r(f)− Vt(f)| =
∫ t+r

t
⟨ζt,Aft⟩dt+

1

KH

∑
Y ∈S

∫ t+r

t
IY (t, u)fHt,uµY (du)dt

≤∥Af∥∞ · r + 1

KH

∑
Y ∈S

∫ t+r

t
IY (t, u)fHt,uµY (du)dt.

Doing a similar process as in (6.5), we conclude that

|Vt+r(f)− Vt(f)| ≤ ∥Af∥∞r + C∥f∥∞r.

Thus, by definition of δ,

sup
0≤r≤δ

|Vt+r(f)− Vt(f)| ≤ ∥Af∥∞δ + C∥f∥∞δ ≤
ϵ

2
.

Consequently,

P

(
sup

0≤r≤δ
|Vt+r(f)− Vt(f)| >

ϵ

2

)
= 0. (6.7)

From (6.6) and (6.7), it follows that

1

δ
P
(

sup
0≤r≤s

|⟨ζt+r, f⟩ − ⟨ζt, f⟩| > ϵ

)
≤ 1

δ

[
P

(
sup

0≤r≤δ
|Mt+r(f)−Mt(f)| >

ϵ

2

)
+ P

(
sup

0≤r≤δ
|Vt+r(f)− Vt(f)| >

ϵ

2

)]

≤ 4C

ϵ2K
∥f∥∞.

Therefore,

lim
δ→0

lim sup
K→∞

sup
t∈[0,T ]

1

δ
P
(

sup
0≤r≤s

|⟨ζt+r, f⟩ − ⟨ζt, f⟩| > ϵ

)
= 0.

Thus, the sequence (ζK)K≥1 is tight in D(R+, (MF (E), v))2.

Having established tightness using an approach inspired by [GZN25], we now recall two
additional results from [Kub23] that will be used in the proof of Theorem 5.1.

For completeness, we reproduce the statements of [Kub23, Proposition 4.7] and [Kub23,
Proposition 4.8]. The proofs are omitted here and can be found in the original article.

Proposition 6.5. Under the assumptions of Theorem 5.1, the sequence (ζK)K≥1 is tight
in D(R+, (MF (E), w))2.

29



Proposition 6.6. Under the assumptions of Theorem 5.1, all limiting values of (ζK)K≥1

in D(R+, (MF (E), w))2 are continous with regard to the total variaton norm, and solutions
of Equation (5.3).

We are now in a position to prove Theorem 5.1.

Proof of Theorem 5.1. By Proposition 6.5, every subsequence of (ζK)K≥1 admits a further
subsequence converging in D(R+, (MF (E), w))2. Proposition 6.6 guarantees that any such
limit is a solution of (5.3) and is continuous with respect to the total variation norm. Since
we assume that ζK0 converges in law to η0 ∈ M1, Proposition 6.1 implies that all possible
limits coincide. Therefore, the whole sequence (ζK)K≥1 converges in D(R+, (MF (E), w))2

to the unique solution of (5.3) with initial condition η0. Finally, Proposition 6.1 ensures
that this limit belongs to D(R+,M1(E))2, which completes the proof.

7 Additional Results on Uniqueness

In this section, we study the uniqueness of solutions to the dynamical system (5.4).
Our goal is to prove that the system admits at most one solution, following the approach

presented by [Kub23, Theorem 4.10]. To this end, we first rewrite the system in the form
of a Cauchy problem and explicitly define all the involved terms.

Let y ∈ C1(R+,Rd) and f : Rd → Rd be such that the system (5.4) can be expressed as

y′(t) = f(y(t)), ∀t ≥ 0,

where d = 2 + 2#S.
We denote by s, i and nXS,I (respectively fs, fi and fXS,I) the components of y (and of f),

for X ∈ {H,W} and (S, I) ∈ S.
We define the following rates:

τG(y) := βGi, τX(y) := − λX
mX

∑
(S,I)∈S

SI nXS,I , X ∈ {H,W}.

Then f : Rd → Rd is given by

fs(y) = −
(
τH(y) + τW (y) + τG(y)

)
s, fi(y) = −fs(y)− γi, (7.1)

and, for all X ∈ {H,W} and (S, I) ∈ S,

fX,S,I(y) =−
[(
λXI +

τX̄(y)

s
+ τG(y)

)
S − γI

]
nXS,I + γ(I + 1)nXS,I+11{S+I<nmax}

+

(
λX(I − 1) +

γX̄(y)

s
+ γG(y)

)
(S + 1)nXS+1,I−11{I≥1}.

(7.2)
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Natural constraints arise from the fact that the population is partitioned into suscep-
tible, infected, and removed individuals, and that each individual belongs to exactly one
household and one workplace. We thus have:

s+ i ≤ 1,
∑

(S,I)∈S

nXS,I ≤ 1,
∑

(S,I)∈S

S nXS,I ≤ mXs, ∀X ∈ {H,W}, (7.3)

where

mX :=

nmax∑
j=0

jπXj .

We define the admissible set:

V :=

y ∈ [0, 1]d : s+ i ≤ 1,
∑

(S,I)∈S

nXS,I ≤ 1, mXs−
∑

(S,I)∈S

S nXS,I ≥ 0, ∀X ∈ {H,W}

.
Proposition 7.1. Let y∗ ∈ V . Then the following asssertions hold:

(i) Suppose that there exists a solution y of the Cauchy problem (5.4) with initial condition
y(0) = y∗. Then y(t) ∈ V for any t ≥ 0 for which y is well defined.

(ii) For any T ≥ 0, this problem admits at most a unique solution y on [0, T ].

(iii) In particular, for any ϵ > 0, the dynamical system (5.4) endowed with initial condition
(5.5) admits at most a unique solution.

Proof. In what follows, we prove only Assertions (ii) and (iii). The proof of Assertion (i)
can be found in [Kub23, Theorem 4.10] and is not reproduced here.

(i) Fix T ≥ 0 and let y = (s, i, nXS,I : X ∈ {H,W}, (S, I) ∈ S) be a solution of the
Cauchy problem y′(t) = f(y(t)) with initial condition y(0) = y∗ ∈ V .

From (5.4), we have

s′(t) ≥ −[(λH + λW )nmax + βG]s(t).

Since s ∈ C1(R+), it follows from a comparison argument that

s(t) ≥ ϵT := s(0) exp(−[(λH + λW )nmax + βG]T ). (7.4)

We consider two cases:
Case 1: s(0) = 0.
If s(0) = 0, then s(t) = 0 for all t ≥ 0. Consequently, nXS,I(t) = 0 for all t ≥ 0, for every

X ∈ {H,W} and (S, I) ∈ S. In this situation, the equation for i(t) reduces to

i′(t) = −γ i(t), t ≥ 0,
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whose unique solution is fully determined by i(0), thereby ensuring the uniqueness of y(t)
on R+.

Case 2: s(0) > 0.
By inequality (7.4), y(t) ∈ VT := V ∩ {s ≥ ϵT } for any t ∈ [0, T ]. Our aim is to prove

that f is Lipschitz continous on VT . Let

y = (s, i, nXS,I : X ∈ {H,W}, (S, I) ∈ S), ŷ = (ŝ, î, n̂XS,I : X ∈ {H,W}, (S, I) ∈ S)

be two points in VT .
Recall that the components of f are fs, fi and fX,S,I (for X ∈ {H,W}) given by (7.1)

and (7.2).
First, we focus in the component fs:
For X ∈ {H,W}, define

cX :=
λX#S(nmax)

2

mX
.

By the definition of τX and the triangle inequality, we obtain

|τX(y)− τX(ŷ)| ≤ λX
mX

∑
(S,I)∈S

SI|nXS,I − n̂XS,I | ≤ cX∥y − ŷ∥∞.

On the other hand, we have

|τG(y)s− τG(ŷ)ŝ| ≤ βG(|i||s− ŝ|+ |i− î||ŝ|) ≤ 2βG∥y − ŷ∥∞.

Therefore,

|fs(y)s− fs(ŷ)| ≤ |τH(y)− τH(ŷ)|+ |τW (y)− τW (ŷ)|+ |τG(y)s− τG(ŷ)ŝ| ≤ cs∥y − ŷ∥∞,

where cs := cH + cW + 2βG.
Next, letting ci := cs + γ, we have

|fi(y)− fi(ŷ)| ≤ |fs(y)− fs(ŷ)|+ γ|i− î| ≤ ci∥y − ŷ∥∞.

Finally, we focus on the components fX,S,I . For X ∈ {H,W}, define c′X := (2λXnmax+
2βG + 2γ)nmax. By definition of fX,S,I and using the fact that |nXS,I − n̂XS,I | ≤ ∥y − ŷ∥∞,
we obtain that

|fX,S,I(y)− fX,S,I(ŷ)| ≤ c′X∥y − ŷ∥∞ +

∣∣∣∣τX̄(y)

s
SnXS,I −

τX̄(ŷ)

ŝ
Sn̂XS,I

∣∣∣∣
+

∣∣∣∣τX̄(y)

s
(S + 1)nXS+1,I−1 −

τX̄(ŷ)

ŝ
(S + 1)n̂XS+1,I−1

∣∣∣∣1{I≥1},

(7.5)

for any X ∈ {H,W} and (S, I) ∈ S.
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Now, for X ∈ {H,W}, let kX := λX̄nmaxmX and define the set

DX := {(x, y) : ϵT ≤ y ≤ 1, 0 ≤ x ≤ kXy
2}.

Notice that, for any (S, I) ∈ S, (τX̄(y)SnXS,I , s) ∈ DX . Indeed, by inequalities (7.3), we
have

|τX̄(y)| = λX̄
mX̄

∑
(S,I)∈S

SInX̄S,I ≤ λX̄
mX̄

(nmaxmX̄s) = λX̄nmaxs, SnXS,I ≤
∑

(S,I)∈S

SInXS,I ≤ mXs.

Therefore,
τX̄(y)SnXS,I ≤ kXs

2.

Thus, as y ∈ VT , we conclude that (τX̄(y)SnXS,I , s) ∈ DX .
It follows from definition of DX that for any (x, y), (u, v) ∈ DX , we have∣∣∣∣xy − u

v

∣∣∣∣ ≤ 1

v

(
x

y
|v − y|+ |x− u|

)
≤ 1

ϵT
(1 ∨ kX)(|v − y|+ |x− u|).

Consequently, for any X ∈ {H,W} and (S, I) ∈ S,∣∣∣∣τX̄(y)

s
SnXS,I −

τX̄(ŷ)

ŝ
Sn̂XS,I

∣∣∣∣ ≤ 1

ϵT
(1∨kX)(|τX̄(y)SnXS,I−τX̄(ŷ)Sn̂XS,I |+|s−ŝ|) ≤ kX,T ∥y − ȳ∥∞,

where kX,T := 1
ϵT
(1 ∨ kX)(λXn

3
max/mX + 1).

Similarly,∣∣∣∣τX̄(y)

s
(S + 1)nXS+1,I−1 −

τX̄(ŷ)

ŝ
(S + 1)n̂XS+1,I−1

∣∣∣∣1{I≥1} ≤ kX,T ∥y − ȳ∥∞.

Hence, from (7.5), we obtain that

|fX,S,I(y)− fX,S,I(ŷ)| ≤ (c′X + 2kX,T )∥y − ŷ∥∞.

Therefore, f is Lipschitz continuous on VT with Lipschitz constant cT := max{cs, ci, c′H +
2KH,T , c

′
W + 2kW,T }.

Now, suppose that there are two solutions of (5.4), y1 and y2, on [0, T ] with the same
initial condition y∗. By Lipschitz continuity, we have

∥y(T )− ŷ(T )∥∞ ≤
∫ T

0
∥f(y(t))− f(ŷ(t))∥∞dt ≤ cT

∫ T

0
∥y(t)− ŷ(t)∥∞.

By Gronwall’s Lemma, it follows that y1 ≡ y2 on [0, T ]. Hence, for any T ≥ 0, the Cauchy
problem admits at most one solution on [0, T ].
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To verify condition (iii), it remains to show that the initial condition y∗, as defined in
equation (5.5), belongs to V .

For any X ∈ {H,W}, using equation (5.5) we have

∑
(S,I)∈S

nXS,I(0) =

nmax∑
n=2

πXn

n−1∑
I=0

(
n

I

)
ϵI(1− ϵ)n−I =

nmax∑
n=2

πXn (1− ϵn) ≤ 1.

Similarly,

∑
(S,I)∈S

SnXS,I(0) =

nmax∑
n=2

πXn

n−1∑
I=0

(n− I)

(
n

I

)
ϵI(1− ϵ)n−I =

nmax∑
n=2

πXn n(1− ϵ),

where in the last equality we used the fact that E[n − B] = n(1 − ϵ) when B ∼ B(n, ϵ).
This can be rewritten as∑

(S,I)∈S

SnXS,I(0) = (mX − πX1 )(1− ϵ) ≤ mXs(0),

where we used that s(0) = 1− ϵ.
Since the remaining conditions of V follow directly from equation (5.5), we conclude

that y∗ ∈ V .
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