Publications

  • Measure estimation on a manifold explored by a diffusion process. V. Divol, H. Guérin, D.T. Nguyen, V.C. Tran. Preprint (2024)

  • On the limit law of the superdiffusive elephant random walk. H. Guérin, L. Laulin, K. Raschel, T. Simon. Preprint (2024)

  • Optimal withdrawals in a general diffusion model with control rates subject to a state-dependent upper bound. H. Guérin, D. Mata, J.F. Renaud, A. Roch. Preprint (2024)

  • Strong uniform convergence of Laplacians of random geometric and directed kNN graphs on compact manifolds. H. Guérin, D.T. Nguyen, V.C. Tran. Preprint (2022)

  • A fixed-point equation approach for the superdiffusive elephant random walk. H. Guérin, L. Laulin, K. Raschel. To appear in Annales de l’Institut Henri Poincaré Probab. Statist. (2024)

  • Optimal Vaccination Policy to Prevent Endemicity: A Stochastic Model. F. Foutel-Rodier, A. Charpentier, H. Guérin. Journal of Mathematical Biology (2025) 10.1007/s00285-024-02171-z

  • Elephant polynomials. H. Guérin, L. Laulin, K. Raschel. Aequationes mathematicae (2024) 10.1007/s00010-024-01095-9

  • On the distribution of cumulative Parisian ruin. H. Guérin, J.F. Renaud. Insurance: Mathematics & Economics (2017) 10.1016/j.insmatheco.2017.01.009

  • Long time behavior of telegraph processes under convex potentials. J. Fontbona, H. Guérin, F. Malrieu. Stochastic Processes and their Applications (2016) 10.1016/j.spa.2016.04.002

  • Joint distribution of a spectrally negative Lévy process and its occupation time, with step option pricing in view. H. Guérin, J.F. Renaud. Advances in Applied Probability (2016) 10.1017/apr.2015.17

  • On the depletion problem for an insurance risk process: new non-ruin quantities in collective risk theory. Z. Ben-Salah, H. Guérin, M. Morales, H.O. Firouzi. European Actuarial Journal (2015) 10.1007/s13385-015-0112-9

  • Quantitative estimates for the long-time behavior of an ergodic variant of the telegraph process. J. Fontbona, H. Guérin, F. Malrieu. Advances in Applied Probability (2012) 10.1239/aap/1354716586

  • Long time behavior of diffusions with Markov switching. J.B. Bardet, H. Guérin, F. Malrieu. ALEA. Latin American Journal of Probability and Mathematical Statistics (2010) .pdf

  • On the Laplace transform of perpetuities with thin tails. J.B. Bardet, H. Guérin, F. Malrieu. ArXiv (2009)

  • Measurability of optimal transportation and strong coupling of martingale measures. J. Fontbona, H. Guérin, S. Méléard. Electronic Communications in Probability (2010) 10.1214/ECP.v15-1534

  • Measurability of optimal transportation and convergence rate for Landau type interacting particle systems. J. Fontbona, H. Guérin, S. Méléard. Probability Theory and Related Fields (2009) 10.1007/s00440-007-0128-4

  • On the uniqueness for the spatially homogeneous Boltzmann equation with a strong angular singularity. N. Fournier, H. Guérin. Journal of Statistical Physics (2008) 10.1007/s10955-008-9511-5

  • Estimates for the density of a nonlinear Landau process. H. Guérin, S. Méléard, E. Nualart. Journal of Functional Analysis (2006) 10.1016/j.jfa.2006.01.017

  • Pointwise convergence of Boltzmann solutions for grazing collisions in a Maxwell gas via a probabilistic interpretation. H. Guérin. ESAIM. Probability and Statistics (2004) 10.1051/ps:2003018

  • Convergence from Boltzmann to Landau processes with soft potential and particle approximations. H. Guérin, S. Méléard. Journal of Statistical Physics (2003) 10.1023/A:1022858517569

  • Solving Landau equation for some soft potentials through a probabilistic approach. H. Guérin. The Annals of Applied Probability (2003) 10.1214/aoap/1050689592

  • Existence and regularity of a weak function-solution for some Landau equations with a stochastic approach. H. Guérin. Stochastic Processes and their Applications (2002) 10.1016/S0304-4149(02)00107-2

Thesis

  • Probabilistic approach of the Landau equation. PhD thesis. Université Paris X - Nanterre, Modal'X (2002). Supervisor: Sylvie Méléard. HAL_logo

  • Probabilistic models in physics, biology and actuarial science. Habilitation à diriger des recherches. Université de Rennes 1, Institut de Mathématiques de Rennes (2019) HAL_logo